Research article Special Issues

Construction of a cryptographic function based on Bose-type Sidon sets

  • Received: 30 January 2024 Revised: 21 March 2024 Accepted: 25 March 2024 Published: 22 May 2024
  • MSC : Primary: 43A46, 11T71; Secondary: 12E20

  • Sidon sets have several applications in mathematics and in real-world problems, including the generation of secret keys in cryptography, error-correcting codes, and the physical problem of compression of signals in telecommunications. In particular, in cryptography, the design of cryptographic functions with optimal properties like nonlinearity and differential uniformity plays a fundamental role in the development of secure cryptographic systems. Based on the construction of Bose-type Sidon sets, in this paper we present the construction of a new cryptographic function with good properties of nonlinearity and differential uniformity.

    Citation: Julian Osorio, Carlos Trujillo, Diego Ruiz. Construction of a cryptographic function based on Bose-type Sidon sets[J]. AIMS Mathematics, 2024, 9(7): 17590-17605. doi: 10.3934/math.2024855

    Related Papers:

  • Sidon sets have several applications in mathematics and in real-world problems, including the generation of secret keys in cryptography, error-correcting codes, and the physical problem of compression of signals in telecommunications. In particular, in cryptography, the design of cryptographic functions with optimal properties like nonlinearity and differential uniformity plays a fundamental role in the development of secure cryptographic systems. Based on the construction of Bose-type Sidon sets, in this paper we present the construction of a new cryptographic function with good properties of nonlinearity and differential uniformity.



    加载中


    [1] M. Matsui, A. Yamagishi, A New Method for Known Plaintext Attack of FEAL Cipher, in Advances in Cryptology — EUROCRYPT' 92 (ed. Rueppel, R.A.), Springer Berlin Heidelberg, Berlin, Heidelberg, 1993, 81–91. https://doi.org/10.1007/3-540-47555-9_7
    [2] E. Biham, A. Shamir, Differential Cryptanalysis of DES Variants, Differential Cryptanalysis of the Data Encryption Standard, Springer New York, New York, NY, 1993, 33–77. https://doi.org/10.1007/978-1-4613-9314-6_4
    [3] L. Budaghyan, Construction and Analysis of Cryptographic Functions, Springer Publishing Company, Incorporated, 2015. https://doi.org/10.1007/978-3-319-12991-4
    [4] Y. Chen, L. Zhang, Z. Gong, W. Cai, Constructing Two Classes of Boolean Functions With Good Cryptographic Properties, IEEE Access, 7 (2019), 149657–149665. https://doi.org/10.1109/ACCESS.2019.2947367 doi: 10.1109/ACCESS.2019.2947367
    [5] C. Beierle, G. Leander, New Instances of Quadratic APN Functions, IEEE T. Inform. Theory, 68 (2022), 670–678. https://doi.org/10.1109/TIT.2021.3120698 doi: 10.1109/TIT.2021.3120698
    [6] L. Mariot, M. Saletta, A. Leporati, L. Manzoni, Heuristic search of (semi-) bent functions based on cellular automata, Natural Computing, 21 (2022), 377–391. https://doi.org/10.1007/s11047-022-09885-3 doi: 10.1007/s11047-022-09885-3
    [7] J. A. Clark, J. L. Jacob, S. Maitra, P. Stănică, Almost Boolean functions: the design of Boolean functions by spectral inversion, Computational intelligence, 20 (2004), 450–462. https://doi.org/10.1111/j.0824-7935.2004.00245.x doi: 10.1111/j.0824-7935.2004.00245.x
    [8] R. C. Bose, An affine analogue of singer's theorem, Journal of the Indian Mathematical Society, 6 (1942), 1–15.
    [9] S. Mesnager, L. Qu, On Two-to-One Mappings Over Finite Fields, IEEE T. Inform. Theory, 65 (2019), 7884–7895. https://doi.org/10.1109/TIT.2019.2933832 doi: 10.1109/TIT.2019.2933832
    [10] N. Alamati, G. Malavolta, A. Rahimi, Candidate Trapdoor Claw-Free Functions from Group Actions with Applications to Quantum Protocols, Theory of Cryptography (eds. Kiltz, E., Vaikuntanathan, V.), Springer Nature Switzerland, Cham, 2022,266–293. https://doi.org/10.1007/978-3-031-22318-1_10
    [11] T. Morimae, T. Yamakawa, Proofs of Quantumness from Trapdoor Permutations, arXiv: 2208.12390, 2022. https://doi.org/10.48550/arXiv.2208.12390
    [12] D. Bartoli, M. Giulietti, M. Timpanella, Two-to-one functions from Galois extensions, Discrete Appl. Math., 309 (2022), 194–201. https://doi.org/10.1016/j.dam.2021.12.008 doi: 10.1016/j.dam.2021.12.008
    [13] V. Idrisova, On an algorithm generating 2-to-1 APN functions and its applications to "the big APN problem", Cryptography and Communications, 11 (2019), 21–39. https://doi.org/10.1007/s12095-018-0310-9 doi: 10.1007/s12095-018-0310-9
    [14] S. Mesnager, L. Qian, X. Cao, Further projective binary linear codes derived from two-to-one functions and their duals, Designs, Codes and Cryptography, 91 (2023), 719–746. https://doi.org/10.1007/s10623-022-01122-3 doi: 10.1007/s10623-022-01122-3
    [15] C. Blondeau, K. Nyberg, Perfect nonlinear functions and cryptography, Finite Fields and Their Applications, 32 (2015), 120–147. Special Issue: Second Decade of FFA. https://doi.org/10.1016/j.ffa.2014.10.007 doi: 10.1016/j.ffa.2014.10.007
    [16] K. Drakakis, V. Requena, G. McGuire, On the Nonlinearity of Exponential Welch Costas Functions, IEEE T. Inform. Theory, 56 (2010), 1230–1238. https://doi.org/10.1109/TIT.2009.2039164 doi: 10.1109/TIT.2009.2039164
    [17] F. Chabaud, S. Vaudenay, Links between differential and linear cryptanalysis, in Advances in Cryptology — EUROCRYPT'94 (ed. A. De Santis), Springer Berlin Heidelberg, Berlin, Heidelberg, 1995,356–365. https://doi.org/10.1007/BFb0053450
    [18] D. Ruiz, C. Trujillo, Y. Caicedo, New Constructions of Sonar Sequences, International Journal of Basic & Applied Sciences, 14 (2014), 12–16.
    [19] C. Carlet, S. Picek, On the exponents of APN power functions and Sidon sets, sum-free sets, and Dickson polynomials, Adv. Math. Commun., 17 (2023), 1507–1525. https://doi.org/10.3934/amc.2021064 doi: 10.3934/amc.2021064
    [20] C. Carlet, S. Mesnager, On those multiplicative subgroups of $\mathbb{F}_{2^n}^*$ which are Sidon sets and/or sum-free sets, J. Algebr. Comb., 55 (2022), 43–59. https://doi.org/10.1007/s10801-020-00988-7 doi: 10.1007/s10801-020-00988-7
    [21] G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, 5th edition, Oxford university press, 1979.
    [22] J. L. Massey, Safer K-64: A Byte-Oriented Block-Ciphering Algorithm, in Fast Software Encryption (ed. R. Anderson), Springer Berlin Heidelberg, Berlin, Heidelberg, 1994, 1–17. https://doi.org/10.1007/3-540-58108-1_1
    [23] K. Drakakis, R. Gow and G. McGuire, APN permutations on $\mathbb{Z}_n$ and Costas arrays, Discrete Appl. Math., 157 (2009), 3320–3326. https://doi.org/10.1016/j.dam.2009.06.029 doi: 10.1016/j.dam.2009.06.029
    [24] R. M. Hakala, An upper bound for the linearity of Exponential Welch Costas functions, Finite Fields and Their Applications, 18 (2012), 855–862. https://doi.org/10.1016/j.ffa.2012.05.001 doi: 10.1016/j.ffa.2012.05.001
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(234) PDF downloads(23) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog