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Abstract: Sidon sets have several applications in mathematics and in real-world problems, including
the generation of secret keys in cryptography, error-correcting codes, and the physical problem
of compression of signals in telecommunications. In particular, in cryptography, the design of
cryptographic functions with optimal properties like nonlinearity and differential uniformity plays a
fundamental role in the development of secure cryptographic systems. Based on the construction of
Bose-type Sidon sets, in this paper we present the construction of a new cryptographic function with
good properties of nonlinearity and differential uniformity.
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1. Introduction

The security of the block cipher in symmetric cryptography, is based, in some cases, on vectorial
Boolean functions Fn

2 → Fm
2 called substitution boxes (S-Box), which satisfy the properties of

high nonlinearity and low differential uniformity that make those functions resistant to the linear
cryptanalysis and differential cryptanalysis introduced by Mitsuru Matsui in [1], and Eli Biham and Adi
Shamir in [2], respectively. The main ideas in those cryptanalyses are (i) to approximate the vectorial
Boolean function by using affine functions, and (ii) to analyze how the differences in the input can affect
the resulting difference in the output. Functions with high nonlinearity and low differential uniformity
are highly resistant to the two cryptanalysis methods mentioned above. The notion of nonlinearity and
differential uniformity can be generalized to algebraic structures other than Fn

2, which allow us to talk
about the nonlinearity and differential uniformity of functions between any two finite Abelian groups.

The designing and construction of cryptographic functions resistant to attacks is a complex task,
and often based on algebraic methods, random generation, and heuristic designs [3–6]. Each of these
methods has advantages and disadvantages over most of the desirable properties of a cryptographic
function; for instance, with algebraic constructions, we analyze what properties the functions satisfy,
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but with heuristic designs, we obtain functions with several properties from their construction [7].
However, if we consider an application from Fn

2 to Fm
2 , then there are 2m2n

functions; that is, there exist
many even in a few variables, which implies a hard problem in a computational search. The abundance
of vectorial Boolean functions suggests to us that it is usually impossible to solve the problem of
the construction of “good” cryptographic functions using only computational searching, and so it is
necessary to introduce more effective methods to design new and better vectorial Boolean functions
that can be efficiently implemented in electronic devices [3].

Functions between two Abelian finite groups A and B with the same cardinality and the smallest
possible nonlinearity are called perfect nonlinear (PN) functions. These functions are related to Sidon
sets (a subset of an additive group with the property that all sums of two elements in this set are
different), since a function is APN if and only if its associated graph is a Sidon set in the product
group A × B. This is one of the reasons we focus on an algebraic construction to introduce new
cryptographic functions that arise from the construction of a finite Sidon set due to Bose [8]. The main
contribution of this paper is the construction of a new set of functions with good linear and differential
properties based on the construction of Sidon sets. This set of functions is 2-to-1, that is, functions in
which each output value has zero or two possible preimages [9]. We know that 2-to-1 functions play
an important role in cryptography because they can be used to create reversible functions that are not
1-to-1, which can make it harder for attackers to break encryption schemes or find collisions in hash
functions [10,11]. Moreover, they are often used in the construction of APN functions, bent functions,
and binary linear codes [12–14].

The remainder of this paper is as follows: Section 2 introduces definitions related to differential
uniformity and nonlinearity in Abelian groups. Section 3 presents the construction of our function and
some of its properties, including differential uniformity and symmetry. We then illustrate its linearity,
and list the number of functions that exist for each n ∈ N based on our construction. Finally, Section 4
presents some conclusions and future research directions.

2. Perfect nonlinear functions and nonlinearity

The resistance of functions to cryptanalysis is characterized by two quantities: (i) nonlinearity,
which measures the resistance of a function to linear cryptanalysis, and (ii) differential uniformity,
which measures the resistance of a function to differential cryptanalysis. So, we want to construct
cryptographic functions with optimal nonlinearity and differential uniformity properties, concepts
introduced in this section.

Let A and B denote two non-empty Abelian groups.

Definition 2.1. Let f : A→ B be a function and let a ∈ A. The derivative of f in a is the function

Da f : A→ B

x 7→ f (x + a) − f (x).

A differential of f with input difference a and output difference b is given by

f (x + a) − f (x) = b. (2.1)

The number of solutions to (2.1) is denoted by δ(a, b), that is

δ(a, b) = |{x ∈ A : f (x + a) − f (x) = b}|.
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Now, if ∆ f denotes the positive integer

∆ f = max
a∈A\{0}

b∈B

δ(a, b),

then f is said to be differentially ∆ f−uniform. Note that ∆ f ≥ |A|/|B|. In particular, if ∆ f = |A|/|B|,
then f is called a perfect nonlinear (PN) function [15]. Note also that if |A| = |B|, then ∆ f = 1, which
implies that (2.1) has one solution. We know that PN functions do not exist in fields of characteristic 2,
since if x satisfies f (x + a) − f (x) = b, then so does x + a. This is the reason for introducing the
following definition:

Definition 2.2. A function f is an almost perfect nonlinear (APN) function if ∆ f = 2|A|/|B|.

In particular, note that if |A| = |B|, then ∆ f = 2, that is, (2.1) has at most two solutions [15].
If we consider a Boolean function f : Fn

2 → F2 of n variables, then the nonlinearity NL( f ) of f
is the minimum Hamming Distance* between f and all affine functions φa(x) = a · x + c, with a ∈ Fn

2
and c ∈ F2. That is

NL( f ) = min
a∈Fn

2

d( f , φa).

However, an equivalent concept to nonlinearity that uses a special case of the discrete Fourier transform
called the Walsh transform (or Walsh–Hadamard transform) is a useful tool when we want to study the
nonlinearity of a function.

Now, consider A = Zq and B = Zr for the q and r integers. Let ωq ∈ C and ωr ∈ C denote the q−th
and r−th roots of unity in C. The expression x 7→ ωax

q defines a character in Zq for all a ∈ Zq. Similarly,
the set of characters in Zr for all b ∈ Zr is defined by y 7→ ωby

r [15].

Definition 2.3. The Walsh–Hadamard transform of f : Zq → Zr at a ∈ Zq and b ∈ Zr is defined as

f̂ (a, b) =
∑
x∈A

ωb f (x)
r ωax

q ,

where ωq is the complex conjugate of ωq.

For the different possible parameter values (a, b), this formula compares every constant multiple
of f against every linear function ax; the greatest value is indicative of the closeness of f to such a
linear function, so the Walsh–Hadamard transform helps us measure the nonlinearity of a function f
according to the following definition:

Definition 2.4. The linearity of a function f : Zq → Zr is defined by

L( f ) = max
0≤a<q
0<b<r

| f̂ (a, b)|.

From [16], we know that if f : Zq → Zr, then
√

q ≤ L( f ) ≤ q. Functions that reach the lower
bound have optimal linearity and are called bent functions.

Definition 2.5. Let f : Zq → Zr. We define the nonlinearity of f by

NL( f ) =
|Zq| − L( f )
|Zr|

=
q − L( f )

r
.

*The Hamming Distance between f and g is d( f , g) = |{x ∈ Fn
2; f (x) , g(x)}|.
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Note that nonlinearity actually measures the distance between f and all linear affine functions.
Furthermore, also thatNL( f ) = 0 if and only if f is an affine linear function. It is clear that a bijection
and its inverse have the same nonlinearity [16].

Finally, from [17], we know that a function f : Fn
2 → F

m
2 , with n ≥ 2m and n even, is perfect

nonlinear if and only if it is bent.

3. The construction

In this section, we present the construction of our function, which is based on the construction of
Sidon sets due to Bose [8].

Let G denote an additive group. A set A ⊆ G is a Sidon set in G if, for all a, b, c, d ∈ A, we have

a + b = c + d ⇒ {a, b} = {c, d}.

That is, A is a Sidon set if all the sums of two elements of A are different. Since a+b = c+d if and only
if a− c = d−b, Sidon sets can also be defined as those with the property that all nonzero differences of
pairs of elements are distinct. In particular, the construction of Sidon sets due to Bose is as follows [8].

Theorem 3.1. Let q = pn with p a prime number and n ∈ N. Let (Fq,+, ·) be the finite field with q
elements, and Fq2 be an algebraic extension of degree two over Fq. If θ is a primitive element of Fq2 ,
then

Bq(θ) = logθ(θ + Fq) := {logθ(θ + a) : a ∈ Fq} (3.1)

is a Sidon set in Zq2−1 with q elements.

From [18], we know that the set θ+Fq is a Sidon set with q elements in the multiplicative group F∗q2 .
Furthermore, we know that isomorphisms preserve the Sidon property, so using the discrete logarithm
in base θ, we verify that set the Bq(θ) is a Sidon set with q elements in the group Zq2−1, which illustrates
a proof of Theorem 3.1.

Example 3.1. Let q = 24. If we take the primitive element θ over F2 such that θ8 + θ4 + θ3 + θ2 + 1 = 0,
then we can construct the Sidon set in Z255 given by

B24(θ) = {1, 3, 16, 25, 41, 48, 62, 90, 145, 146, 157, 165, 217, 223, 227, 253}.

According to the work in [18], we know that Bq(θ) satisfies the following properties, where [1, q]
denotes the set of integers {1, . . . , q}.

Proposition 3.1. If Bq(θ) is the set in (3.1), then

B1) If b ∈ Bq(θ), then b . 0 mod (q + 1).

B2) If a, b ∈ Bq(θ) and a , b, then a . b mod (q + 1).

B3) Bq(θ) mod (q + 1) := {a mod (q + 1) : a ∈ Bq(θ)} = [1, q].

Proof. We verify property B2) by contradiction. Suppose a ≡ b mod (q + 1), that is, there exists n ∈ Z
such that a − b = n(q + 1). Note that θq+1 generates F∗q, so θa−b = θn(q+1) ∈ F∗q. Now, let a, b ∈ Bq(θ),
there exist k1, k2 ∈ Fq with k1 , k2, such that a = logθ(θ + k1) and b = logθ(θ + k2), implying
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that θa = θ + k1 and θb = θ + k2. Thus, θa−b = (θ + k1)/(θ + k2). Since θa−b ∈ F∗q, there exists c ∈ F∗q such
that (θ + k1)/(θ + k2) = c. So, (1 − c)θ = ck2 − k1. Because c , 1, then θ = (ck2 − k1)(1 − c)−1 ∈ F∗q,
which is a contradiction. □

Proposition 3.1 means that for each x ∈ [1, q], we can find a unique b ∈ Bq(θ) such that
b mod (q+ 1) = x, i.e., there exists a bijective relationship between the sets [1, q] andBq(θ) mod (q+1).

The authors in [19, 20] describe the following relationship between Sidon sets and APN functions:
A function F : Fn

2 → F
n
2 is APN if and only if the set GF = {(x, F(x)) : x ∈ Fn

2} is a Sidon set in the
group (Fn

2 × F
n
2,+). It is common to refer to GF as the graph of F. This relationship gives us an idea

of how to construct cryptographic functions from known constructions of Sidon sets on finite Abelian
groups, that is, we take Sidon sets in one dimension and try to put them in two dimensions via some
transformation that preserves the Sidon property; in particular, we use the isomorphism guaranteed by
the Chinese remainder theorem to put the set Bq(θ) in two dimensions.

Note that if q = 2n, then we have that gcd(q + 1, q − 1) = 1, and so by the Chinese remainder
theorem, we have that Zq2−1 is isomorphic to Zq+1 ×Zq−1. So if Bq(θ) is a Sidon set given by (3.1), then
each element b ∈ Bq(θ) can be represented as an ordered pair in Zq+1 × Zq−1 as follows:

(b mod (q + 1), b mod (q − 1)). (3.2)

According to Proposition 3.1, B3), note that if we run b in Bq(θ), then the set of first coordinates
of pair (3.2) coincides with the set [1, q]; it allows us to define a set of functions with a common
domain [1, q], which, when endowed with the sum modulo q, can be identified with Zq, that
is ([1, q],+mod q) ≡ Zq. The co-domain of this set of functions is obtained by reducing the set Bq(θ)
modulo q − 1, as indicated by the second coordinate of the pair (3.2). This set of functions is our
main contribution to this work, and they have, in particular, properties of symmetry, good differential
uniformity, and good nonlinearity. Moreover, since Proposition 3.1 is valid for all q, we observe that
if q = pn with p > 2, then the construction of these functions is still valid and their properties are
preserved, except for good nonlinearity.

Definition 3.1. Let Bq(θ) be a Sidon set defined by (3.1). Identify the set [1, q] with the group Zq and
consider Bq(θ) mod (q − 1) ⊆ Zq−1. Define the function fq : Zq → Zq−1 as

fq(x) = b mod (q − 1), (3.3)

for b ∈ Bq(θ) such that b mod (q + 1) = x.

We denote the range of fq as the sequence R( fq) = [ fq(x)]. The function fq can be constructed based
on the following procedure, where step 2 is valid because of Proposition 3.1, B2).

Step 1. Take x ∈ Zq.

Step 2. Find the unique b ∈ Bq(θ) such that b ≡ x mod (q + 1).

Step 3. Take fq(x) = b mod (q − 1).

Note that b depends on x, so we can denote b as bx. In this way, the diagram in Figure 1 illustrates the
procedure described above.
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←

→

−→
fq

m
od

(q −
1)

m
od

(q
+
1)

bx ∈ Bq(θ)−

→

bx mod (q − 1) ⊆ Zq−1x ∈ Zq

Figure 1. Diagram for function fq : Zq → Zq−1.

Example 3.2. Let

B24(θ) = {1, 3, 16, 25, 41, 48, 62, 90, 145, 146, 157, 165, 217, 223, 227, 253}

be the Sidon set in Example 3.1. We construct the function f16 : Z16 → Z15 as follows:

• If x = 1, then b = 1 ∈ B24(θ) satisfies 1 mod 17 = 1, which implies that f16(1) = 1 mod 15 = 1.

• If x = 2, then b = 223 ∈ B24(θ) is the unique element that satisfies 223 mod 17 = 2, which implies
that f16(2) = 223 mod 15 = 13.

• If x = 3, then b = 3 ∈ B24(θ) satisfies 3 mod 17 = 3, and so f16(3) = 3 mod 15 = 3.

• If x = 4, then b = 157 ∈ B24(θ) is the unique element that satisfies 157 mod 17 = 4, which implies
that f16(4) = 157 mod 15 = 7.

• We repeat the above procedure for the other elements of Z16.

Figure 2 illustrates the function f16 : Z16 → Z15 with a range given by

R( f16) = [1, 13, 3, 7, 0, 2, 11, 10, 10, 11, 2, 0, 7, 3, 13, 1].

Figure 2. Function f16 associated with the Sidon set B24(θ).

AIMS Mathematics Volume 9, Issue 7, 17590–17605.
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Note that we take 0 := 16 in Z16, so Figure 2 shows a clear symmetry in the range of the function f16.
In general, we have the following result:

Theorem 3.2. If fq : Zq → Zq−1 is the function defined in (3.3), then for all x ∈ Zq we have

i) fq(x) = fq(q + 1 − x).

ii) fq((q + 1)/2 + x) = fq((q + 1)/2 − x) for p > 2 (i.e., fq is symmetric with respect to x = (q + 1)/2).

Proof. i) Let x, q + 1 − x ∈ [1, q]. Assume that

fq(x) = r ≡ b1 mod (q − 1),
fq(1 − x) = s ≡ b2 mod (q − 1),

with b1, b2 ∈ Bq(θ). According to the definition of fq, we know that

b1 ≡ x mod (q + 1),
b2 ≡ q + 1 − x mod (q + 1).

Consider the following two cases:

Case 1. If b1 = b2, then q + 1 − x ≡ x mod (q + 1). Since 1 ≤ x, q + 1 − x ≤ q < q + 1 we have
that q + 1 − x = x, or x = (q + 1)/2 (only for q odd), which implies fq(x) = fq(q + 1 − x), that is, r = s.

Case 2. If b1 , b2, then there are k1, k2 ∈ Fq with k1 , k2 such that

b1 = logθ(θ + k1),
b2 = logθ(θ + k2),

that is

b1 − b2 = logθ(θ + k1) − logθ(θ + k2) = logθ

(
θ + k1

θ + k2

)
.

Let γ := θb1−b2 = θ+k1
θ+k2

. Note that γ , 1, since otherwise k1 = k2. Moreover, γ < F∗q because θ

is a primitive element over Fq of degree two, so γ ∈ F∗q2 \ F
∗
q. Because F∗q and

〈
θq−1

〉
(the group

generated by θq−1) are two subgroups of F∗q2 that only intersect at 1 if q is even or ±1 if q is odd, and

because γ < F∗q, we have that γ ∈
〈
θq−1

〉
. Therefore, there exists t ∈ Z such that γ = θt(q−1), from

which θb1−b2 = θt(q−1). Since b1−b2 ≡ r− s mod (q−1), then b1−b2 = n(q−1)+ (r− s) for some n ∈ Z,
implying that

θn(q−1)+(r−s) = θt(q−1),

from which n(q−1)+(r−s) ≡ t(q−1) mod (q2−1), that is, (r−s) ≡ 0 mod (q−1).Because 0 ≤ r, s < q−1
we have that r = s.
ii) Is similar to the proof of i). □

Now, we know in Zq that −x = q − x, so in Zq+1 and for b1, b2 ∈ Bq(θ), we have

b1 mod (q + 1) + b2 mod (q + 1) = x + 1 + q − x = 0
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in Zq+1. That is, b1+b2 ≡ 0 mod (q+1) and b1−b2 ≡ 0 mod (q−1). The following corollary formalizes
this property, in which the system of congruences is a particular case of the multivariable Chinese
Remainder theorem.

Corollary 3.1. For a given x ∈ Bq(θ), there exist a y ∈ Bq(θ) not necessarily different from x such that{
x + y ≡ 0 mod (q + 1)
x − y ≡ 0 mod (q − 1).

Example 3.3. Let

B24(θ) = {1, 3, 16, 25, 41, 48, 62, 90, 145, 146, 157, 165, 217, 223, 227, 253}

be the Sidon set in Example 3.1. Table 1 illustrates Corollary 3.1.

Table 1. Illustration of Corollary 3.1.
x + y ≡ 0 mod 17 x − y ≡ 0 mod 15

16 + 1 16 − 1
48 + 3 48 − 3

145 + 25 145 − 25
146 + 41 146 − 41
227 + 62 227 − 62
165 + 90 165 − 90
217 + 157 217 − 157
253 + 223 253 − 223

Note that Theorem 3.2 establishes that fq(x) is symmetric and consequently a 2-to-1 function
according to the next definition [9].

Definition 3.2. Let A and B be two finite sets, and let f be a mapping from A to B. Function f is called
a 2-to-1 mapping if one of the following two cases holds:

i) |A| is even, and for any b ∈ B, it has either 2 or 0 preimages of f .

ii) |A| is odd, and for all but one b ∈ B, it has either 2 or 0 preimages of f , and the exception element
has exactly one preimage.

From Theorem 3.2, i), note that the conditions of Definition 3.2 are satisfied, and from Theorem 3.2,
ii), the exception element is 2−1 mod q = q+1

2 . It implies the next corollary.

Corollary 3.2. For all prime numbers p and all n ∈ N, the function fq is 2-to-1.

One important property in cryptographic applications is low differentiability, since functions with
low differential uniformity are resistant to differential attacks [2]. Fortunately, the function fq has this
property, as we demonstrate in the following theorem.

Theorem 3.3. For all prime numbers p and all n ∈ N, the function fq is differentially 2-uniform.

Proof. Let a ∈ Zq \ {0} and b ∈ Zq−1. Consider the equation

fq(x + a) − fq(x) = b. (3.4)

AIMS Mathematics Volume 9, Issue 7, 17590–17605.
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From the definition of fq we know that there exist b1, b2 ∈ Bq(θ) such that

b1 mod (q + 1) = x + a,

b2 mod (q + 1) = x,

which implies that b1 + b2 ≡ 2x + a mod (q + 1), and so there exists m ∈ N such that

b1 + b2 = (q + 1)m + 2x + a. (3.5)

Note also from the definition of fq that

fq(x + a) = b1 mod (q − 1),
fq(x) = b2 mod (q − 1),

so (3.4) is equivalent to b1 − b2 ≡ b mod (q − 1), that is, there exists n ∈ N such that

b1 − b2 = (q − 1)n + b, (3.6)

and thus, from (3.5) and (3.6), we have

2x = (q − 1)n − (q + 1)m + 2b2 + b − a.

That is
2x ≡ −2m + 2b2 + b − a mod (q − 1). (3.7)

So far, we have proved that (3.4) is equivalent to (3.7). Next, to show that (3.4) has at most 2 solutions,
we consider the following cases for q:

1) If q = 2n, then gcd(2, q − 1) = 1, and so (3.7) has one solution.

2) If q = pn and p , 2, then gcd(2, q−1) = 2, but note that 2|(−2m+2b2+b−a) if and only if 2|(b−a).
So it is sufficient to find b ∈ Zq−1 and a ∈ Zq \ {0} such that b − a is an even number to guarantee
that (3.7) has exactly two solutions.

□

3.1. Enumeration of the functions fq

Note that the function fq depends on the Sidon set Bq(θ) given in (3.1); thus, if we want to count
the functions fq we must first count the sets Bq(θ). Note also that for a fixed q = pn, the construction
of the Sidon set Bq(θ) depends on a primitive element θ ∈ F∗q2 , so we can wonder about the behavior of
these sets when we vary the primitive element within the field. We have the following:

Theorem 3.4. If α and θ are conjugates, then Bq(θ) = Bq(α).

Proof. If α and θ are conjugates, then α = θpi
for some i ∈ {1, . . . , 2n − 1}. Let logα(α + a) ∈ Bq(α).

Since αq+1 generates F∗pn there exists m ∈ Z such that a = αm(q+1) = θm(q+1)pi
, thus

logα(α + a) = logθpi (θpi
+ θm(q+1)pi

)

AIMS Mathematics Volume 9, Issue 7, 17590–17605.
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= logθpi (θ + θm(q+1))pi

= pi · logθpi (θ + θm(q+1)). (3.8)

Note that θq+1 also generates F∗pn , so b := θm(q+1) ∈ F∗pn . If we apply the base interchange formula on
the right side of (3.8), then

pi · logθpi (θ + θm(q+1)) = pi · logθpi θ · logθ(θ + b)
= pi(pi)−1 · logθ(θ + b)
= logθ(θ + b).

Therefore, logα(α + a) ∈ Bq(θ), which implies that Bq(α) ⊆ Bq(θ). Now, because |Bq(α)| = |Bq(θ)|, we
have that Bq(α) = Bq(θ). □

Computational calculations indicate that the reciprocal of Theorem 3.4 is valid, but its proof is
strongly related to the theory of multipliers on relative difference sets, of which we do not know the
solution. So we conjecture the following:

Conjecture 3.1. If Bq(θ) = Bq(α), then α and θ are conjugates.

Theorem 3.4 helps us to establish an upper bound for the number of different Bose-type Sidon sets
that exist for each p ≥ 2 and n ≥ 1, and since the construction of our set of functions depends on these
sets, it will also help us to establish an upper bound for the number of different functions fq that exist.

Theorem 3.5. Let q = pn. For each p ≥ 2 and each n ∈ N, there exist at most φ(q2 − 1)/2n different
Sidon sets Bq(θ).

Proof. Note that, if θ is a primitive element of Fq2 over Fp, then its 2n conjugates θ, θp, . . . , θp2n−1
are

also primitives, so from Theorem 3.4, it generates the same Sidon set Bq(θ). Furthermore, because
there are φ(q2 − 1) primitive elements in Fq2 (φ is Euler’s phi function), we have that actually there
exist φ(q2− 1)/2n different primitive elements that are not conjugated to each other, thus these primitive
elements generate at most φ(q2 − 1)/2n different Sidon sets Bq(θ). □

Note that if Conjecture 3.1 is true, then we obtain the equality in Theorem 3.5 since the φ(q2− 1)/2n
different primitive elements not conjugate with each other would generate exactly φ(q2 − 1)/2n
sets Bq(θ).

Lemma 3.1. Let p > 2 and θ be a primitive element of Fp2 . If c = p2−1
2 + p, then θc = θ + b for

some b ∈ Fp \ {0}.

Proof. Note that gcd(c, p2 − 1) = 1, so θc is another primitive element of Fp2 , implying that θc = aθ+ b
for some a, b ∈ Fp \ {0}. Note also that θc = −θp, from which θp = −aθ−b, and so θp+ θ = (1−a)θ−b.
Because θp + θ ∈ Fp, we have a = 1. □

Theorem 3.6. Let p > 2 and t ≤ φ(p2 − 1)/2. LetA = {Bp(θi) : i = 1, . . . , t} be the collection of the t
different Bose-type Sidon sets. For each Bp(θi) ∈ A there exist Bp(θ j) ∈ A, with i , j such that

Bp(θi) mod (p − 1) = Bp(θ j) mod (p − 1).
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Proof. Let θi be a primitive element such that Bp(θi) ∈ A and c = p2−1
2 + p. Take j = ic and note

that Bp(θ j) ∈ A because θ j is also a primitive element; moreover, Bp(θ j) , Bp(θi) since otherwise θ j

and θi would be conjugates, which is not possible. Now, from Lemma 3.1, we have that

θ j = (θi)c = θi + b (3.9)

for some b ∈ Fp \ {0}. Now, if logθ j(θ j + k0) ∈ Bp(θ j) for some k0 ∈ Fp, then from (3.9) we have that

logθ j(θ j + k0) = logθ j(θi + b + k0)
= logθ j(θi + k1)

for k1 ∈ Fp. If we apply the base interchange formula, then

logθ j(θ j + k0) = logθ j θi · logθi(θ
i + k1)

= j−1i · logθi(θ
i + k1)

= c−1 · logθi(θ
i + k1),

so
c logθ j(θ j + k0) = logθi(θ

i + k1),

that is
c logθ j(θ j + k0) ∈ Bp(θi).

This implies that cBp(θ j) ⊆ Bp(θi), and because |cBp(θ j)| = |Bp(θi)|, we have proof
that cBp(θ j) = Bp(θi), and so Bp(θ j) mod (p − 1) = Bp(θi) mod (p − 1). □

Note again that if Conjecture 3.1 is true, then we could guarantee uniqueness in the set Bp(θ j) ∈ A.
The objective of this section was to count the functions fq, so, in the following theorem, we establish
an upper bound for the number of functions for q = 2n and q = p.

Theorem 3.7. Let q = pn with n ∈ N. For p = 2, there exist at most φ(q2 − 1)/2n different functions
fq, and for p > 2 and n = 1, there exist at most φ(p2 − 1)/4 different functions fp.

Proof. If p = 2, then by the Chinese remainder theorem we have that Zq2−1 is isomorphic to Zq+1×Zq−1

(denoted by Zq2−1 ≡ Zq+1 × Zq−1), and because Sidon’s property is preserved under isomorphism [18],
from (3.2) we have that

Bq(θ) ≡
(
Bq(θ) mod (q + 1),Bq(θ) mod (q − 1)

)
= (dom( fq), ran( fq)),

and the result follows from Theorem 3.5.
Now, if p > 2 and n = 1, then we simply put the set Bp(θ) in the group Zp+1 × Zp−1 as(

Bp(θ) mod (p + 1),Bp(θ) mod (p − 1)
)
= (dom( fp), ran( fp)),

and the result follows from Theorem 3.5 and Theorem 3.6. □

Example 3.4. Note that if q = 2n, then gdc(q − 1, q + 1) = 1, and φ(q2 − 1)/2n = φ(q − 1)φ(q + 1)/2n,
which facilitates the counting of the functions fq. For instance, for q = 24, there exists φ(15)φ(17)/8 =
16 different functions given by
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[1, 13, 3, 7, 0, 2, 11, 10, 10, 11, 2, 0, 7, 3, 13, 1], [1, 7, 12, 4, 3, 14, 11, 13, 13, 11, 14, 3, 4, 12, 7, 1],
[1, 4, 14, 10, 2, 0, 6, 7, 7, 6, 0, 2, 10, 14, 4, 1], [1, 0, 8, 13, 11, 14, 5, 9, 9, 5, 14, 11, 13, 8, 0, 1],
[1, 2, 9, 4, 6, 3, 12, 8, 8, 12, 3, 6, 4, 9, 2, 1], [1, 7, 2, 4, 8, 9, 6, 13, 13, 6, 9, 8, 4, 2, 7, 1],
[1, 12, 14, 4, 11, 8, 2, 3, 3, 2, 8, 11, 4, 14, 12, 1], [1, 13, 8, 7, 5, 12, 6, 10, 10, 6, 12, 5, 7, 8, 13, 1],
[1, 10, 5, 13, 14, 3, 6, 4, 4, 6, 3, 14, 13, 5, 10, 1], [1, 4, 9, 10, 12, 5, 11, 7, 7, 11, 5, 12, 10, 9, 4, 1],
[1, 5, 3, 13, 6, 9, 0, 14, 14, 0, 9, 6, 13, 3, 5, 1], [1, 14, 0, 10, 6, 12, 9, 2, 2, 9, 12, 6, 10, 0, 14, 1],
[1, 9, 5, 10, 11, 2, 14, 12, 12, 14, 2, 11, 10, 5, 9, 1], [1, 3, 2, 7, 11, 5, 8, 0, 0, 8, 5, 11, 7, 2, 3, 1],
[1, 10, 0, 13, 9, 8, 11, 4, 4, 11, 8, 9, 13, 0, 10, 1], [1, 8, 12, 7, 6, 0, 3, 5, 5, 3, 0, 6, 7, 12, 8, 1].

From [21, Chapter 18], we know that lim supφ(n)/n = 1, which means that the order of φ(n) is
nearly n, that is,

φ(q2 − 1)
2n

≈
q2 − 1

2n
.

So for p = 2 and n sufficiently large, we conclude that there exist approximately 22n/2n functions fq.
Moreover, from [21, Theorem 328], we know that the function φ(n) satisfies

lim inf
n→∞

φ(n)
n

log log n

= e−γ, (3.10)

where γ is the Euler–Mascheroni constant. So for q = 2n, (3.10) implies that φ(q2 − 1)/2n is bounded
below by

22n

2neγ log log 22n ,

this expression is equivalent to
22n

(2eγ + εn)n log n
with εn → 0 when n→ ∞. Hence, for q = 2n, we have that the number of functions fq is at least

22n

(2eγ + εn)n log n
,

if n is large enough. For p > 2 and n = 1, similar formulas can be derived.

3.2. Simulation results

This section illustrates the linearity of fq. We know for α , 0 that | f̂q(q−α, (q− 1)− β)| = | f̂q(α, β)|,
which, together with Theorem 3.2, reduces by a factor of approximately 4 the number of points required
to calculate the linearity of fq. With this fact and the fast Fourier transform, we illustrate in Figures 3
and 4 the linearity of fq for q = p with 2 < p < 20000 and q = 2n with 2 ≤ n ≤ 16. Figure 3b
illustrates that the approximation of linearity has a slope of around 0.64, which leads us to conjecture
that the linearity of fp is bounded below by an affine function that depends on p; unfortunately, this
implies that L( fp) would be asymptotically closer to the upper bound, that is, fp is closer to being a
linear function.

But when q = 2n, our simulations show a more interesting behavior. For example, for values
of n ∈ {4, 5, 6, 7, 8}, important in cryptographic applications, the linearity of f2n is closer to the lower
bound, as shown in Figure 4a and Table 2, implying that f2n has high nonlinearity. Figure 4b illustrates,
by means of an exponential regression with a coefficient of determination of r2 = 0.998, that for values
of n greater than 16, the behavior of the linearity of f2n tends to remain.

AIMS Mathematics Volume 9, Issue 7, 17590–17605.



17602

(a) Linearity vs. boundaries. (b) Linearity and approximation.

Figure 3. Behavior of the linearity of fp for 2 < p < 20000.

(a) Linearity vs. boundaries. (b) Linearity and approximation.

Figure 4. Behavior of the linearity of f2n for 2 ≤ n ≤ 16.

Table 2. Linearity of f2n and lower and upper bounds of L( f2n).

n Lower bound L( f2n ) Upper bound

4 4 6,00776721665963 16

5 5,65685425 9,76163585008853 32

6 8 15,7984554517002 64

7 11,3137085 23,1605616207365 128

8 16 33,7779991765064 256

Now, when we compare the cases q = 2n and q = p with p > 2, we suspect that the loss of linearity
for the second case is due to the fact that there is no an isomorphism between Zp2−1 and Zp+1 × Zp−1.
Furthermore, note that this behavior still remains when q = pn with p > 2 and n > 1.
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4. Conclusions

Our contribution in this work is the construction of a new set of functions that are 2-to-1 functions
and differentially 2-uniform, which, for the case q = 2n, present an asymptotic behavior close to the
trivial lower bound for its linearity, that is, the asymptotic nonlinearity of function fq is high. The
number of functions that exist for each n, with p = 2, is of the order 22n/2n, and for n = 1 and p > 2,
it is of the order p2/4, so this set of functions grows rapidly as n and p increase, respectively.

Due to the particular way in which we define our function fq, we cannot establish nontrivial bounds
for its linearity, so this problem remains open. For instance, through linear and exponential regression,
respectively, we conjecture that, i) for q = p, there exist two constants 0.5 < α < 1 and 0 < β < 0.5
such that L( fp) ≥ αp + β, and ii) for q = 2n, there exist two constants γ > 1 and 0 < µ < 1 such
that L( f2n) ≤ γeµn. Moreover, note that in this work we emphasize the study of two cases; first,
when q = 2n due to the isomorphism between Zq2−1 and Zq+1 × Zq−1, and second, when q = p; but the
case q = pn with p > 2 and n > 1 was not studied in detail, so it remains open to study what other
properties the function fpn satisfies for this case. For instance, we conjecture from Theorem 3.7 that
the number of functions fq that exist for q = pn with p > 2 and n > 1 is equal to φ(q2 − 1)/4n, but for
proof of this, it is necessary to generalize Lemma 3.1 and Theorem 3.6 for that case.

Some ciphers, such as SAFER [22], use non-binary transformations with “high nonlinearity”
and optimal differential uniformity, known in the literature as exponential Welch Costas (EWC)
and logarithmic Welch Costas (LWC) functions [16, 23, 24]. Given that for the case q = 2n, the
characteristics of our function are similar to those of these functions, we raised concern about the
possibility of using our function in a cipher like SAFER.
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