In this study, we investigate the oscillation behavior of second-order self-adjoint $ q $-difference equations, focusing on the renowned Leighton oscillation theorem. Through an example, we demonstrate that the $ q $-version of Leighton's classical oscillation theorem does not hold and requires refinement. To address this, we introduce an oscillation-preserving transformation and establish alternative theorems to the ones existing in the literature. The strength of our work lies in the absence of any sign condition on the potential function. We also provide illustrative examples to support our findings and mention directions for future research.
Citation: Aǧacık Zafer, Zeynep Nilhan Gürkan. Oscillation behavior of second-order self-adjoint $ q $-difference equations[J]. AIMS Mathematics, 2024, 9(7): 16876-16884. doi: 10.3934/math.2024819
In this study, we investigate the oscillation behavior of second-order self-adjoint $ q $-difference equations, focusing on the renowned Leighton oscillation theorem. Through an example, we demonstrate that the $ q $-version of Leighton's classical oscillation theorem does not hold and requires refinement. To address this, we introduce an oscillation-preserving transformation and establish alternative theorems to the ones existing in the literature. The strength of our work lies in the absence of any sign condition on the potential function. We also provide illustrative examples to support our findings and mention directions for future research.
[1] | F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[2] | R. Floreanini, L. Vinet, Quantum symmetries of $q$-difference equations, J. Math. Phys., 36 (1995), 3134–3156. https://doi.org/10.1063/1.531017 doi: 10.1063/1.531017 |
[3] | M. Bohner, R. Chieochan, The Beverton-Holt $q$-difference equation, J. Biol. Dyn., 7 (2013), 86–95. https://doi.org/10.1080/17513758.2013.804599 doi: 10.1080/17513758.2013.804599 |
[4] | Q. A. Hamed, R. Al-Salih, W. Laith, The analogue of regional economic models in quantum calculus, J. Phys.: Conf. Ser., 1530 (2020), 012075. https://doi.org/10.1088/1742-6596/1530/1/012075 doi: 10.1088/1742-6596/1530/1/012075 |
[5] | G. Bangerezako, An introduction to $q$-difference equations, San Diego: Harcourt/Academic Press, 2008. |
[6] | V. Kac, P. Cheung, Quantum calculus, Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
[7] | M. Bohner, M. Ünal, Kneser's theorem in $q$-calculus, J. Phys. A: Math. Gen., 38 (2005), 6729. https://doi.org/10.1088/0305-4470/38/30/008 doi: 10.1088/0305-4470/38/30/008 |
[8] | S. Garoufalidis, J. S. Geronimo, Asymptotics of $q$-difference equations, In: T. Kohno, M. Morishita, Primes and knots, Contemporary Mathematics, 416 (2006), 83–114. |
[9] | J. Baoguo, L. Erbe, A. Peterson, Oscillation of a family of $q$-difference equations, Appl. Math. Lett., 22 (2009), 871–875. https://doi.org/10.1016/j.aml.2008.07.014 |
[10] | P. Rehak, On a certain asymptotic class of solutions to second-order linear $q$-difference equations, J. Phys. A: Math. Theor., 45 (2012), 055202. https://doi.org/10.1088/1751-8113/45/5/055202 doi: 10.1088/1751-8113/45/5/055202 |
[11] | T. G. G. Soundarya, V. R. Sherine, Oscillation theory of $q$-difference equation, J. Comput. Math., 5 (2021), 083–091. https://doi.org/10.26524/cm111 doi: 10.26524/cm111 |
[12] | A. M. Hassan, H. Ramos, O. Moaaz, Second-order dynamic equations with noncanonical operator: oscillatory behavior, Fractal Fract., 7 (2023), 134. https://doi.org/10.3390/fractalfract7020134 doi: 10.3390/fractalfract7020134 |
[13] | T. S. Hassan, R. A. El-Nabulsi, N. Iqbal, A. A. Menaem, New criteria for oscillation of advanced noncanonical nonlinear dynamic equations, Mathematics, 12 (2024), 824. https://doi.org/10.3390/math12060824 doi: 10.3390/math12060824 |
[14] | W. Leighton, On self-adjoint differential equations of second order, J. Lond. Math. Soc., s1-27 (1952), 37–47. https://doi.org/10.1112/jlms/s1-27.1.37 |
[15] | M. Bohner, A. Peterson, Dynamic equations on time scales: an introduction with applications, Birkhäuser, 2001. https://doi.org/10.1007/978-1-4612-0201-1 |
[16] | R. A. Moore, The behavior of solutions of a linear differential eqution of second order, Pac. J. Math., 5 (1955), 125–145. https://doi.org/10.2140/PJM.1955.5.125 doi: 10.2140/PJM.1955.5.125 |
[17] | E. C. Tomastik, Oscillation of nonlinear second order differential equations, SIAM J. Appl. Math., 5 (1967), 1275–1277. |
[18] | N. P. Bhatia, An oscillation theorem, Notices Amer. Math. Soc., 13 (1966), 243. |
[19] | P. Hartman, On non-oscillatory linear differential equations of second order, Amer. J. Math., 74 (1952), 389–400. https://doi.org/10.2307/2372004 doi: 10.2307/2372004 |
[20] | I. V. Kamenev, An integral criterion for oscillation of linear differential equations of second order, Math. Notes Acad. Sci. USSR, 23 (1978), 136–138. https://doi.org/10.1007/BF01153154 doi: 10.1007/BF01153154 |
[21] | W. J. Coles, Oscilllation criteria for nonlinear second order equations, Ann. Mat. Pura Appl., 82 (1969), 123–133. https://doi.org/10.1007/BF02410793 doi: 10.1007/BF02410793 |
[22] | E. Hille, Non-oscillation theorems, Trans. Amer. Math. Soc., 64 (1948), 234–252. https://doi.org/10.1090/S0002-9947-1948-0027925-7 doi: 10.1090/S0002-9947-1948-0027925-7 |