Research article Special Issues

Exploring variable-sensitive $ q $-difference equations for $ q $-SINE Euler polynomials and $ q $-COSINE-Euler polynomials

  • Received: 13 November 2023 Revised: 19 April 2024 Accepted: 29 April 2024 Published: 14 May 2024
  • MSC : 11B68, 11B83, 26C10, 34A30, 65D20, 65L99

  • In this study, we introduced several types of higher-order difference equations involving $ q $-SINE Euler (QSE) and $ q $-COSINE Euler (QCE) polynomials. Depending on the parameters selected, these higher-order difference equations exhibited properties of trigonometric functions or related Euler numbers. Approximate root construction focused on the QSE polynomial, which was the solution of the $ q $-difference equations obtained earlier. We also showed the structure of the approximate roots of higher-order polynomials among the QSE polynomials, understood them, and considered the associated conjectures.

    Citation: Jung Yoog Kang, Cheon Seoung Ryoo. Exploring variable-sensitive $ q $-difference equations for $ q $-SINE Euler polynomials and $ q $-COSINE-Euler polynomials[J]. AIMS Mathematics, 2024, 9(6): 16753-16772. doi: 10.3934/math.2024812

    Related Papers:

  • In this study, we introduced several types of higher-order difference equations involving $ q $-SINE Euler (QSE) and $ q $-COSINE Euler (QCE) polynomials. Depending on the parameters selected, these higher-order difference equations exhibited properties of trigonometric functions or related Euler numbers. Approximate root construction focused on the QSE polynomial, which was the solution of the $ q $-difference equations obtained earlier. We also showed the structure of the approximate roots of higher-order polynomials among the QSE polynomials, understood them, and considered the associated conjectures.



    加载中


    [1] W. H. Abdi, On $q$-Laplace transforms, Proc. Natl. Acad. Sci. India, 29 (1961), 389–408.
    [2] G. Bangerezako, An Introduction to $q$-Difference Equations, Preprint, Bujumbura: University of Burundi, 2007.
    [3] L. Carlitz, $q$-Bernoulli numbers and polynomials, Duke Math. J., 15 (1948), 987–1000.
    [4] L. Carlitz, $q$-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., 76 (1954), 332–350.
    [5] T. Ernst, A Comprehensive Treatment of $q$-Calculus, New York: Springer Science, Business Media, 2012.
    [6] J. A. Ganie, A. A. Bhat, S. A. Wani, Natural transform of two variables in $q$-calculus with applications, Bollettino dell'Unione Matematica Italian, 17 (2024), 101–117.
    [7] R. N. Goldman, P. Simenov, Y. Simsek, Generating Functions For The Q-Bernstein Bases, Siam J. Discrete Math., 28 (2014), 1009–1025.
    [8] H. F. Jackson, $q$-Difference equations, Am. J. Math., 32 (1910), 305–314.
    [9] H. F. Jackson, On $q$-functions and a certain difference operator, Earth Environ. Sci. Trans. R. Soc. Edinb., 46 (2013), 253–281.
    [10] A. Kemp, Certain $q$-analogues of the binomial distribution, Sankhya Indian J. Stat. Ser. A, 64 (2002), 293–305.
    [11] N. Kilar, Y. Simsek, Computational formulas and identities for new classes of Hermite-based Milne–Thomson type polynomials: Analysis of generating functions with Euler's formula, Math. Appl. Sci., 44 (2021), 6731–6762.
    [12] N. Kilar, Y. Simsek, H. M. Srivastava, Recurrence relations, associated formulas, and combinatorial sums for some parametrically generalized polynomials arising from an analysis of the Laplace transform and generating functions, Ramanujan J., 61 (2023), 731–756.
    [13] N. Kilar, Y. Simsek, Identities and relations for Hermite-based Milne–Thomson polynomials associated with Fibonacci and Chebyshev polynomials, RACSAM, 115 (2021), 28. https://doi.org/10.1007/s13398-020-00968-3 doi: 10.1007/s13398-020-00968-3
    [14] J. Konvalina, A unified interpretation of the binomial coefficients, the Stirling numbers, and the Gaussian coefficients, Am. Math. Mon., 107 (2000), 901–910. https://doi.org/10.1080/00029890.2000.12005290 doi: 10.1080/00029890.2000.12005290
    [15] T. Kim, C. S. Ryoo, Some identities for Euler and Bernoulli polynomials and their zeros, Axioms, 7 (2018), 56. https://doi.org/10.3390/axioms7030056 doi: 10.3390/axioms7030056
    [16] J. Y. Kang, C. S. Ryoo, Various structures of the roots and explicit properties of $q$-cosine Bernoulli polynomials and $q$-sine Bernoulli polynomials, Mathematics, 8 (2020), 463. https://doi.org/10.3390/math8040463 doi: 10.3390/math8040463
    [17] Q. Luo, H. M. Srivastava, $q$-extensions of some relationships between the Bernoulli and Euler polynomials, Taiwan. J. Math., 15 (2011), 241–257.
    [18] S. Picoli Jr., R. S. Mendes, L. C. Malacarne, R. P. B. Santos, $q$-distributions in complex systems: A brief review, Braz. J. Phys., 39 (2009), 468–474. https://doi.org/10.1590/S0103-97332009000400023 doi: 10.1590/S0103-97332009000400023
    [19] C. S. Ryoo, J. Y. Kang, Explicit Properties of $q$-Cosine and $q$-Sine Euler Polynomials Containing Symmetric Structures, Symmetry, 12 (2020), 1274. https://doi.org/10.3390/sym12081247 doi: 10.3390/sym12081247
    [20] C. S. Ryoo, J. Y. Kang, Various Types of $q$-Differential Equations of Higher Order for $q$-Euler and $q$-Genocchi Polynomials, Mathematics, 10 (2022), 1181. https://doi.org/10.3390/math10071181 doi: 10.3390/math10071181
    [21] P. S. Rodrigues, G. Wachs-Lopes, R. M. Santos, E. Coltri, G. A. Giraldi, A $q$-extension of sigmoid functions and the application for enhancement of ultrasound images, Entropy, 21 (2019), 430. https://doi.org/10.3390/e21040430 doi: 10.3390/e21040430
    [22] E. Schrödinger, A method for determining quantum mechanical eigenvalues and eigenfunctions, Proc. Roy. Irish. Acad. A, 46 (1940), 9–16.
    [23] K. Victor, C. Pokman, Quantum Calculus Universitext, New York: Springer, 2002.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(419) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog