Research article

Some well known inequalities on two dimensional convex mappings by means of Pseudo $ \mathcal{L-R} $ interval order relations via fractional integral operators having non-singular kernel

  • Received: 01 March 2024 Revised: 10 April 2024 Accepted: 15 April 2024 Published: 07 May 2024
  • MSC : 26A48, 26A51, 33B10, 39A12, 39B62

  • Fractional calculus and convex inequalities combine to form a comprehensive mathematical framework for understanding and analyzing a variety of problems. This note develops Hermite-Hadamard, Fejér, and Pachpatte type integral inequalities within pseudo left-right order relations by applying fractional operators with non-singular kernels. Recently, results have been developed using classical Riemann integral operators in addition to various other partial order relations that have some defects that we explained in literature in order to demonstrate the unique characteristics of pseudo order relations. To verify the developed results, we constructed several interesting examples and provided a number of remarks that demonstrate that this type of fractional operator generalizes several previously published results when different things are set up. This work can lead to improvements in mathematical theory, computational methods, and applications across a wide range of disciplines.

    Citation: Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan. Some well known inequalities on two dimensional convex mappings by means of Pseudo $ \mathcal{L-R} $ interval order relations via fractional integral operators having non-singular kernel[J]. AIMS Mathematics, 2024, 9(6): 16061-16092. doi: 10.3934/math.2024778

    Related Papers:

  • Fractional calculus and convex inequalities combine to form a comprehensive mathematical framework for understanding and analyzing a variety of problems. This note develops Hermite-Hadamard, Fejér, and Pachpatte type integral inequalities within pseudo left-right order relations by applying fractional operators with non-singular kernels. Recently, results have been developed using classical Riemann integral operators in addition to various other partial order relations that have some defects that we explained in literature in order to demonstrate the unique characteristics of pseudo order relations. To verify the developed results, we constructed several interesting examples and provided a number of remarks that demonstrate that this type of fractional operator generalizes several previously published results when different things are set up. This work can lead to improvements in mathematical theory, computational methods, and applications across a wide range of disciplines.



    加载中


    [1] V. E. Tarasov, On history of mathematical economics: Application of fractional calculus, Mathematics, 7 (2019), 509. https://doi.org/10.3390/math7060509 doi: 10.3390/math7060509
    [2] L. Debnath, A brief historical introduction to fractional calculus, Int. J. Math. Educ. Sci. Technol., 35 (2004), 487–501. https://doi.org/10.1080/00207390410001686571 doi: 10.1080/00207390410001686571
    [3] B. Acay, R. Ozarslan, E. Bas, Fractional physical models based on falling body problem, AIMS Mathematics, 5 (2020), 2608–2628. http://doi.org/2010.3934/math.2020170
    [4] M. A. Noor, K. I. Noor, M. U. Awan, New perspective of log-convex functions, Appl. Math. Inf. Sci., 14 (2020), 847–854. http://doi.org/10.18576/amis/140512 doi: 10.18576/amis/140512
    [5] W. Afzal, K. Shabbir, M. Arshad, J. K. K. Asamoah, A. M. Galal, Some novel estimates of integral inequalities for a generalized class of harmonical convex mappings by means of center-radius order relation, J. Math., 2023 (2023), 8865992. https://doi.org/10.1155/2023/8865992 doi: 10.1155/2023/8865992
    [6] Y. Almalki, W. Afzal, Some new estimates of Hermite-Hadamard inequalities for harmonical Cr-hconvex functions via generalized fractional integral operator on set-valued mappings, Mathematics, 11 (2023), 4041. https://doi.org/10.3390/math11194041 doi: 10.3390/math11194041
    [7] S. Sezer, Z. Eken, G. Tınaztepe, G. Adilov, p-Convex functions and some of their properties, Numer. Funct. Anal. Optim., 43 (2021), 443–459. https://doi.org/10.1080/01630563.2021.1884876 doi: 10.1080/01630563.2021.1884876
    [8] Y. An, G. Ye, D. Zhao, W. Liu, Hermite-Hadamard type inequalities for interval $(h_1, h_2)$-convex functions, Mathematics, 7 (2019), 436. https://doi.org/10.3390/math7050436 doi: 10.3390/math7050436
    [9] J. Pečarić, I. Perić, G. Roqia, Exponentially convex functions generated by Wulbert's inequality and Stolarsky-type means, Math. Comput. Model., 55 (2012), 1849–1857. https://doi.org/10.1016/j.mcm.2011.11.032 doi: 10.1016/j.mcm.2011.11.032
    [10] W. Afzal, M. Abbas, S. M. Eldin, Z. A. Khan, Some well known inequalities for $ (h_1, h_2) $-convex stochastic process via interval set inclusion relation, AIMS Mathematics, 8 (2023), 19913–19932. https://doi.org/10.3934/math.20231015 doi: 10.3934/math.20231015
    [11] W. Afzal, N. M. Aloraini, M. Abbas, J. S. Ro, A. A. Zaagan, Some novel Kulisch-Miranker type inclusions for a generalized class of Godunova-Levin stochastic processes, AIMS Mathematics, 9 (2024), 5122–5146. https://doi.org/10.3934/math.2024249 doi: 10.3934/math.2024249
    [12] W. Afzal, M. Abbas, W. Hamali, A. M. Mahnashi, M. D. Sen, Hermite-Hadamard-type inequalities via Caputo-Fabrizio fractional integral for $h$-Godunova-Levin and $(h_1, h_2)$-convex functions, Fractal Fract., 7 (2023), 687. https://doi.org/10.3390/fractalfract7090687 doi: 10.3390/fractalfract7090687
    [13] V. Stojiljkovic, Twice differentiable Ostrowski type tensorial norm inequality for continuous functions of selfadjoint operators in Hilbert spaces, Eur. J. Pure Appl. Math., 16 (2023), 1421–1433. https://doi.org/10.29020/nybg.ejpam.v16i3.4843 doi: 10.29020/nybg.ejpam.v16i3.4843
    [14] V. Stojiljković, R. Ramaswamy, O. A. A. Abdelnaby, Some refinements of the tensorial inequalities in Hilbert spaces, Symmetry, 15 (2023), 925. https://doi.org/10.3390/sym15040925 doi: 10.3390/sym15040925
    [15] T. Saeed, W. Afzal, K. Shabbir, S. Treant¸a, M. De la Sen, Some novel estimates of Hermite-Hadamard and Jensen type inequalities for $(h_1, h_2)$-convex functions pertaining to total order relation, Mathematics, 10 (2022), 4777. https://doi.org/10.3390/math10244777 doi: 10.3390/math10244777
    [16] J. Hadamard, Essai sur l'étude des fonctions données par leur développement de Taylor, J. Math. Pures Appl., 9 (1892), 101–186.
    [17] S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775–788.
    [18] D. Zhao, M. A. Ali, G. Murtaza, Z. Zhang, On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions, Adv. Differ. Equ., 2020 (2020), 570. https://doi.org/10.1186/s13662-020-03028-7 doi: 10.1186/s13662-020-03028-7
    [19] K. K. Lai, S. K. Mishra, J. Bisht, M. Hassan, Hermite-Hadamard type inclusions for interval-valued coordinated preinvex functions, Symmetry, 14 (2022), 771. https://doi.org/10.3390/sym14040771 doi: 10.3390/sym14040771
    [20] F. Wannalookkhee, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, On Hermite-Hadamard type inequalities for coordinated convex functions via (p, q)-calculus, Mathematics, 9 (2021), 698. https://doi.org/10.3390/math9070698 doi: 10.3390/math9070698
    [21] H. Kalsoom, S. Rashid, M. Idrees, F. Safdar, S. Akram, D. Baleanu, et al., Post quantum integral inequalities of Hermite-Hadamard-type associated with coordinated higher-order generalized strongly pre-invex and quasi-pre-invex mappings, Symmetry, 12 (2020), 443. https://doi.org/10.3390/sym12030443 doi: 10.3390/sym12030443
    [22] A. Akkurt, M. Z. Sarıkaya, H. Budak, H. Yıldırım, On the Hadamard's type inequalities for co-ordinated convex functions via fractional integrals, J. King Saud Univ. Sci., 29 (2017), 380–387. https://doi.org/10.1016/j.jksus.2016.06.003 doi: 10.1016/j.jksus.2016.06.003
    [23] F. Shi, G.Ye, D. Zhao, W. Liu, Some fractional Hermite-Hadamard type inequalities for interval-valued functions, Mathematics, 8 (2020), 534. https://doi.org/10.3390/math8040534 doi: 10.3390/math8040534
    [24] T. Saeed, A. Cătaș, M. B. Khan, A. M. Alshehri, Some new fractional inequalities for coordinated convexity over convex set pertaining to fuzzy-number-valued settings governed by fractional integrals, Fractal Fract., 7 (2023), 856. https://doi.org/10.3390/fractalfract7120856 doi: 10.3390/fractalfract7120856
    [25] X. Wu, J. Wang, J. Zhang, Hermite-Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel, Mathematics, 7 (2019), 845. https://doi.org/10.3390/math7090845 doi: 10.3390/math7090845
    [26] B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comput. Appl. Math., 353 (2019), 120–129. https://doi.org/10.1016/j.cam.2018.12.030 doi: 10.1016/j.cam.2018.12.030
    [27] M. B. Khan, H. A. Othman, G. Santos-García, T. Saeed, M. S. Soliman, On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings, Chaos Soliton Fract., 169 (2023), 113274. https://doi.org/10.1016/j.chaos.2023.113274 doi: 10.1016/j.chaos.2023.113274
    [28] M. Alomari, M. Darus, Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities, Int. J. Contemp. Math. Sci., 3 (2008), 1557–1567.
    [29] M. Alomari, M. Darus, On the Hadamard's inequality for log-convex functions on the coordinates, J. Inequal. Appl., 2009 (2009), 283147. https://doi:10.1155/2009/283147 doi: 10.1155/2009/283147
    [30] T. Du, T. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Soliton Fract., 156 (2022), 111846. https://doi.org/10.1016/j.chaos.2022.111846 doi: 10.1016/j.chaos.2022.111846
    [31] H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910. https://doi.org/10.1007/s10957-020-01726-6 doi: 10.1007/s10957-020-01726-6
    [32] T. Saeed, E. R. Nwaeze, M. B. Khan, K. H. Hakami, New version of fractional Pachpatte-type integral inequalities via coordinated h-convexity via left and right order relation, Fractal Fract., 8 (2024), 125. https://doi.org/10.3390/fractalfract8030125 doi: 10.3390/fractalfract8030125
    [33] V. Stojiljković, R. Ramaswamy, O. A. A. Abdelnaby, S. Radenović, Some novel inequalities for LR-(k, h-m)-p convex interval valued functions by means of pseudo order relation, Fractal Fract., 6 (2022), 726. https://doi.org/10.3390/fractalfract6120726 doi: 10.3390/fractalfract6120726
    [34] M. B. Khan, M. A. Noor, J. E. Macías-Díaz, M. S. Soliman, H. G Zaini, Some integral inequalities for generalized left and right log convex interval-valued functions based upon the pseudo-order relation, Demonstr. Math., 55 (2022), 387–403. https://doi.org/10.1515/dema-2022-0023 doi: 10.1515/dema-2022-0023
    [35] H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, Y. S. Hamed, New Riemann-Liouville fractional-order inclusions for convex functions via interval-valued settings associated with Pseudo-order relations, Fractal Fract., 6 (2022), 212. https://doi.org/10.3390/fractalfract6040212 doi: 10.3390/fractalfract6040212
    [36] W. Liu, F. Shi, G. Ye, D. Zhao, Some inequalities for Cr-log-h-convex functions, J. Inequal. Appl., 2022 (2022), 160. https://10.1186/s13660-022-02900-2 doi: 10.1186/s13660-022-02900-2
    [37] W. Liu, F. Shi, G. Ye, D. Zhao, The properties of harmonically Cr-h-convex function and its applications, Mathematics, 10 (2022), 2089. https://doi.org/10.3390/math10122089 doi: 10.3390/math10122089
    [38] W. Afzal, N. M. Aloraini, M. Abbas, J. S. Ro, A. A. Zaagan, Hermite-Hadamard, Fejér and trapezoid type inequalities using Godunova-Levin Preinvex functions via Bhunia's order and with applications to quadrature formula and random variable, Math. Biosci. Eng., 21 (2024), 3422–3447. https://doi.org/10.3934/mbe.2024151 doi: 10.3934/mbe.2024151
    [39] A. A. H. Ahmadini, W. Afzal, M. Abbas, E. S. Aly, Weighted Fejér, Hermite-Hadamard, and Trapezium-type inequalities for $(h_1, h_2)$-Godunova-Levin Preinvex function with applications and two open problems, Mathematics, 12 (2024), 382. https://doi.org/10.3390/math12030382 doi: 10.3390/math12030382
    [40] H. Zhou, M. S. Saleem, W. Nazeer, A. F. Shah, Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions via Riemann-Liouville fractional integrals, AIMS Mathematics, 7 (2022), 2602–2617. https://doi.org/10.3934/math.2022146 doi: 10.3934/math.2022146
    [41] D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
    [42] H. Román-Flores, V. Ayala, A. Flores-Franulič, Milne type inequality and interval orders, J. Comput. Appl. Math., 40 (2021), 130. https://doi.org/10.1007/s40314-021-01500-y doi: 10.1007/s40314-021-01500-y
    [43] F. Jarad, S. K. Sahoo, K. S. Nisar, S. Treanţă, H. Emadifar, T. Botmart, New stochastic fractional integral and related inequalities of Jensen-Mercer and Hermite-Hadamard-Mercer type for convex stochastic processes, J. Inequal. Appl., 2023 (2023), 51. https://doi.org/10.1186/s13660-023-02944-y doi: 10.1186/s13660-023-02944-y
    [44] M. B. Khan, H. M. Srivastava, P. O. Mohammed, K. Nonlaopon, Y. S. Hamed, Some new estimates on coordinates of left and right convex interval-valued functions based on pseudo order relation, Symmetry, 14 (2022), 473. https://doi.org/10.3390/sym14030473 doi: 10.3390/sym14030473
    [45] T. Zhou, Z. Yuan, T. Du, On the fractional integral inclusions having exponential kernels for interval-valued convex functions, Math. Sci., 17 (2023), 107–120. https://doi.org/10.1007/s40096-021-00445-x doi: 10.1007/s40096-021-00445-x
    [46] M. A. Latif, M. Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinates, Int. Math. Forum., 47 (2009), 2327–2338.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(574) PDF downloads(62) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog