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1. Introduction

Fractional calculus (FC) replaces ordinary derivatives with fractional derivatives in mathematical
analysis. By doing this, we improve the theory by enabling the dynamics to be represented by a non-
integer order derivative, which helps to better characterize natural processes, especially when there are
certain degrees of uncertainty involved. FC has been shown to be an effective tool for modeling real-
world issues, allowing for more accurate adjustments of theoretical models to actual data. Applications
are found, for instance, in the following fields: economy [1], engineering [2] and physics [3].

In FC, fractional integral inequalities are very useful for investigating the behavior of fractional
integrals and their link to classical integrals. They establish constraints on fractional differential
equation solutions and help to prove their existence and uniqueness. Although FC and convex analysis
are two distinct branches of mathematics, they may be combined to provide intriguing new ideas and
practical applications in a range of domains, including nonlocal modeling, differential equations, and
optimization.

Convex mappings may be used for a wide range of mathematical structures, such as topological
spaces, function spaces, and metric spaces. Generalized convexity introduces certain changes of
classical convex mappings in order to accommodate a broader class of functions and sets. Some
newly presented classes of generalized convex mappings are as follows (see Refs. [4-8]). In [9],
the authors examined exponentially convex functions generated by Wulbert’s and Stolarsky-type
inequalities. In [10], the authors employed (4, h;)-convex stochastic processes to derive three well-
known inequalities with interesting applications. In [11], the authors utilized Kulisch-Miranker type
relations and created Hermite-Hadamard, Ostrowski, and Jensen type inclusions for Godunova-Levin
mappings. Afzal et al. [12] created several novel Hermite-Hadamard inequalities with applications
to special means using two distinct concepts of generalized convex mappings. Stojiljkovic [13]
applied the twice differentiable tensorial norm inequality of Ostrowski type for self-adjoint operators’
continuous functions in Hilbert space. In [14], the authors explored several convex mappings to refine
the tensorial inequalities in Hilbert spaces. Saeed et al. [15] employed (4, h,)-convex mappings to
create Hermite-Hadamard inequalities utilizing completely interval order relations.

These distinct classes prompted multiple academics to create the following double inequality for
convex functions from various perspectives; this double inequality is the most significant feature of
optimization. It is defined as follows for some convex function G; on some interval of subset of real
numbers (see Refs. [16]),

0>
G](al +52)< 1 f Gi(6) df < Gl(al);‘Gl(aZ). (1.1)

2 0, -0,
Using a classical integral operator and a basic order relation, renowned mathematician Dragomir [17]
extended inequality (1.1) into coordinated form for the first time in 2001 as follows:

(91+(92 (93+(94 1 1 o2 (93+(94 1 4 (91+(92
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2 216, -0, J,, T\ T2 )T e e ), T\ Y)Y

S((92 - 1)(04 — 03) f Gilxy)dy dx

<l[ 1 f[Gl(x,83)+G(X,34)]dx+
01 a

1 4
- f [G1(@1,) + Gu(@2, )] dy|

4 — 03 Jg,

410, -0,
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<G1(51, 03) + G1(01,04) + G1(02, 03) + G1(02, 0s)
< ) .

(1.2)

Owing to the wide range of applications of set-valued analysis across several fields, different
authors have used different kinds of operators and order relations to create integral disparities in the
context of interval-valued mappings (I.V.F). Inspired by this concept, Zhao et al. [18] recently proved
inequality (1.2) in the setting of interval inclusion relations by using the standard integral operator.
In [19], authors introduced interval-valued pre-invex functions on plane and developed several double
inequalities. Wannalookkhee et al. [20] used quantum integrals to find the double inequality on plane,
with several applications. Using the concept of quantum integrals, Kalsoom et al. [21] developed an
inequality of the Hermite-Hadamard type (H.H) related to coordinated higher-order generalized pre
and quasi-invex mappings. Akkurt et al. [22] developed novel H.H type fractional integral inequalities
for double fractional integrals by using two intriguing identities for functions of two variables. Shi
et al. [23] used two types of generalized convex functions to create H.H and its symmetric variation,
using (I.V.F). Using coordinated up and down convex mappings with fuzzy-number values, Saeed
et al. [24] developed H.H and Pachpatte-type integral inequalities. Wu et al. [25] used fractional
integrals with exponential kernel to develop three fundamental integral identities based on first- and
second-order derivatives of a given function. For convex functions, Ahmad et al. [26] developed
H.H, Hermite-Hadamard-Fejér, Dragomir-Agarwal, and Pachpatte type inequalities based on fractional
operators with non-singular kernels. Khan et al. [27] used fuzzy fractional integral operators with
exponential kernels and established certain H.H and its other different variants of inequalities for
exponential trigonometric convex fuzzy-number valued mappings. Alomari and Darus [28,29] utilized
bidimensional generalized convex functions to derive new bounds for H.H inequalities, including s-
convex functions in the first sense and log-convex functions. Du and Zhou [30] used convex two-
dimensional mappings and established the H.H inequality and its weighted and product forms based
on partial order inclusion relations via fractional integral operators with exponential kernels. Budak
et al. [31] establish quantum H.H-type inequalities utilizing newly defined quantum integrals for
coordinated convex functions according to two-variable functions.

Our primary focus in this article is on pseudo left-right interval order relations. Some recent
developed outcomes in this direction is as follows: Saeed et al. [32] created three well-known
inequalities in the context of pseudo order relations using coordinated #-convex mappings. Stojiljkovic
et al. [33] employed Katugampola integrals to create a new class of p-convex mappings and exploited
left-right order relations to create many new generalized bounds of that double inequality. Khan
et al. [34] employed convex interval-valued functions via log convex functions based on the pseudo-
order relation to produce numerous new intriguing characteristics and inequalities. Srivastava et al. [35]
developed new generalized inequalities for pseudo-order relations by applying fractional operators to
convex mappings. Motivated by these findings, the authors in [36,37] first connected H.H inequality
using two different kinds of convex functions in the setting of cr-order interval-valued mappings. Afzal
et al. [38] used different types of generalized convex functions and developed different types of set-
valued H.H inequalities with applications. For more recent findings about related conclusions utilizing
different types of convex functions and order relations, we consult these papers: (see Refs. [39—41]).

When it comes to adjusting inequalities in interval mappings, the key notions are “order relations”
and “convex functions”. Recently, authors utilized an order relation “C,” that has some defects. As
an example of this case, the authors in the following reference [42] showed that some results are not
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adjusted in the setting of set-valued mappings. To handle this problem, authors introduced a new type
of relation called the left-right order relation “<,” which allows us to compare intervals with ease and
consider as an extension of the classical order “<”. Our work is novel in the case of pseudo left-
right order relations, and we have derived H.H, Fejér, and Pachpatte-type inequalities for fractional
integral operators with non-singular kernels of exponential type. These results generalize a number of
previously reported findings. Furthermore, we developed a few interesting nontrivial examples which
demonstrate the accuracy of our results, as well as several remarks that show that we can recover
various existing results when different parameters are set. Our motivations stem from the rich literature
on developed results, including these articles [18, 33, 34], that have inspired us to create new and
improved versions of H.H, Fejér-type, and Pachpatte-type inequalities.

The work is organized in the following manner: In Section 2, we begin by reviewing some
known definitions, interval calculus findings, and introductory facts of fractional calculus theory. We
summarize the article’s key results in Section 3, along with three well-known inequalities in a fresh
setting with insightful remarks and illustrations. In Section 4, we discuss the obtained results and
conclusions and provide some future recommendations.

2. Preliminaries

This section discusses several fundamental concepts related to fractional calculus and interval
calculus, such as definitions and properties. Furthermore, we begin this section by correcting some
notations used throughout the text.

8 Y]

;"1 a space of positive intervals in R;

: a space of positive and negative intervals in R;
= G: set-valued mapping deformed;

inclusion relation;

standard relation;

p- pseudo left-right relation.

e o 0o 0 o o
IQ 1

AA D

2.1. Interval analysis

Let R be the one-dimensional Euclidean space, and consider R; the family of all nonempty compact
convex subsets of R, that is,

Ri = {[(91,(92] : 61,82 € R and (91 < 82}
The Hausdorff metric on R; is defined by
H(P, Q) = max{d(P, Q),d(P, Q)}, (2.1)

where d(P, Q) = maxy,ep d(d;, Q), and d(0;, Q) = miny,eq d(d;, 1) = ming,cq |0; — 8,|.

Remark 2.1. For the Hausdorff metric defined in (2.1), an analogous form is:
H([81, 011, [02, 0,]) = max{|d; — 82,10, — dal},
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which is also known as the Moore metric on the space of intervals. On R;, we define the Minkowski
sum and scalar multiplication using
P+Q={d,+0,]0, €P,0, € Qtand yP = {y0, | 9, € P}.
Also, if P = [ﬁ , (9_1] and Q = [@, 6_2] are two compact intervals, then we define the difference as
follows:
with the product

P-Q = [min{d:02, 8105, 0,02, 0102}, sup{0102, 8102, 0105, 010, }],

P [mm 00T | @@a—la—w

— = —Y =, —,—¢,SU T, Ty — 5

Q 9 8, % 0, 0, 0, 92 0,
where 0 ¢ Q. The definition of the pseudo interval order relation “<,” is given in [34] and defined as
follows:

and the division

(01,011,102, 021 © 81 < 9, and 3y < B,

Deﬁnitiﬂn 2.1. [36] Let G; : [0, @] — R; be an interval-valued mapping defined by G,(n) =
[E1(n), Fi(D]. G1 € IRga, 6,1 if F1 (), Fi(m) € Ro, 0,1 and

02

> 0> _
(IR) f; Gin d = | (R) - Eon. () Fn dn|

01

2.2. Interval-valued double integral

A collection of numeral {a;_;, &, a;} | is called to be nonoverlapping partition P’ of [9;,d,] if P’ :
0 =ty<ty<---<t,=0,witha;_; <& <a;foralli=1,2,3,...,m. Further, if we consider Aa; =
a; — a;_1, then P’ is called to be 5-fine if Aa; < ¢ for all i. Let P(d, [0, 0,]) be taken to be the pack of all
o-fine partitions of [0y, 02]. If {ai_, &, a;}" | and {by_y, 773, by }J?‘: , are partitions of P” and P”, respectively,
then one has A; ; = [ai_, a;] X [bs_, by] called the partition rectangle of A = [d;, 0] X [83, 04] with the
points (&, 775) inside the rectangles [a;_;, a;] X [bs_1, by]. Furthermore, if P(6, A), we denote the set of
all 5-fine partitions of A where P’ € P(6, [01, 0;]) and P” € P(9, [03, 04]), then one has

SG1,P,6,A) = > > Gil&, 15)AA;.

i=1 J=1

We call S(G4, P, 6, A) an integral sum of G, related with P € P(6, A). We refer to the reference [18] for
a more detailed description of the principles and notations of interval-valued double integrals.

Taking motivation from the typical double integrals defined in the article [43], we propose the
following double fractional integrals.
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Definition 2.2. Let G, : [3,0,] X [03,04] € R®> — R; be an interval-valued function defined
as Gi(n,m) = [ﬁ(’]b’lz),Gl(th)]- The double fractional operators are represented as
S s Il 3 L and 30" - of order 6, € (0,1),0, € (0,1) along with 81,8y = 0 defined

by

| Y (S TR o P
35 G106 Y) = o= f f e " VeTm UG (¢, 5)dsdt, x > 01,y > ds,
’ 1Y2 Jo; 04
L (% ey 1o
3o G y) = f f e 7 Ve m “VG (¢, s)dsdt, x > dy,y < da,
’ 192 Jo; Jy
61,0 1 o S ex) — LB (y—s)
I Gi(x,y) = — e e % VG (t,s)dsdt, x < 85,y > Os,
927,04 0.0, Jx 4

as well as

1 (% (Y iy i

i‘sg"f’g Gix,y) = —f f e @ e m VG (t, s)dsdt, X < s,y < Oa,
2 016> Jx y

respectively, then one has

L
lim Sg’l’ffa4+G1(x,y):@ fa fa G (t, s)dsdt.
1 4

6,—1
6—1

It is simple to give sequential interval-valued fractional integrals in line with Definition 2.2.

04+ 0 1 " e 04+ 0
3 .G P B | emm G, |, —— |dt,x > 8
\)61+ 1 X, 2 01 " 1 1 s 2 , X 1s
Os+05\ 1 (" 1o 0y +0
~0 4 3| _ - - (t—x) 4 3
\Saz—Gl X, 5 = ) ) e 4 G, (t, 7 )dt,X < 0,
0,+0 1 Y _i-a 0,+90
32,6, | —=y]== | e ® "G, [2—=—=2,5|ds,y >4
J5,+ 11 3 Y 6, J, 2 1 »S|dS, Yy > 04,

along with

2 2

Definition 2.3. [17] Let Nonnegative real-valued function G, : Q = [0;,0,] X [03,04] € R*> — K" is
said to be a coordinated convex function if

A +9d 1 (% e A+
Sgi_Gl( ! 2’}/):_‘[/V e ¢ y)(}l( ! Z,S)dS,y<a4-

Gi(3101 + (1 = 31)02, 8205 + (1 = 2)04) < 010,G1(T1,03) + 0,(1 = 31)G(T1,04)
+01(1 = 0,)G1(8,.03) + (1 = 9)(1 = 02)G1(T2,04)
holds true for every (01, 9,), (03, 04) € Q along with 3,3, € [0, 1].

Definition 2.4. [18] Let G, : Q = [01,02] X [03,04] € R*> — R;" is said to be an interval-valued
coordinated convex function if

Gi(83101 + (1 = 81)02, 3205 + (1 = 32)04) 2 010,G1(T1,03) + 02(1 — 01)G1(T 1, 4)
+01(1 = 0,)G1(82.03) + (1 = 01)(1 = 0,)G(T2,04)

holds true for every (01, 93), (03, 04) € Q along with 3,3, € [0, 1].
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Definition 2.5. [44] G, : Q = [0,,0,] X [05,04] € R*> — R;' is said to be an interval-valued
coordinated convex function if

Gi(8:10, + (1 = 31)02, 3203 + (1 — 82)04)<p010,G1(81,03) + 0»(1 — 8)G (T, 04)
+01(1 = 0,)G1(8,.03) + (1 = 3)(1 = 0,)G1(T2,04)

holds true for every (01, d,), (03, 94) € Q along with 3, 3, € [0, 1].
Example 2.1. G, : [0,, 0] X [03,04] € R*> = R;* is a coordinated interval-valued function defined as
G, = [4e™ + 67" + 2,11 + 26 + 7], (x,y) € [0, 1] x [0, 1].

The terminanl point functions G(a, b),G_l(a, b) are convex functions on . Hence, G| is a convex
interval-valued function on Q.

3. H.H-type double fractional Pseudo order relations
Theorem 3.1. Let G, : [0y,0,] X [05,04] € R> — R;* be an interval-valued coordinated convex

mapping defined as G; = [Gi(a,b),Gi(a,b)] with 0 < 01 < 05,0 < 035 < 04, , then the following
relations hold:

01+ 0, 03+ 04
555
(I =61 -6,) [@91,92
TPA(L = e o)1 — e ) Martas*
+30% 1Gi(01,00) + 3 Gi(01,05)]
SpGl(al, 03) + G1(0,, 93) Z G1(01,04) + G1(0a, 94),

where 8; = 1520, — 01) and 8y = +52(04 — 03).

Gi1(32,04) + 33", G182, 05)

Proof. Since G; is an interval-valued coordinated convex function, for instance we consider if we take
X = 5101 + (1 - Sl)az,y = (1 — 51)61 + 5182,11 = 3183 +(1- S1)84,W = (1 - 31)63 + 3164, then one
has

X+y ut+w) 01 +0, 03+ 04
Gl(z’ 2)_G1( 2 72
1
SpZ[G](Slal+(1—51)52,5163+(1—S1)64)+G1(5161+(1—31)82,(1—S1)a3+5184)

+G; (1 =31)01 + 3102,8103 + (1 =81) 04) + G (1 = J1) 01 + 3105, (1 —s1) 03 +8104)] . (3.1)

Multiplying above pseudo order relation (3.1) with e ®91e™2%1 and integrating, one has

1 1
G (0 +9 &+ f f eV Tig0s gg. 49,
2 2 0o Jo

1 1 1
sz {f f e O1J1g0s1 [G1 (8101 + (1 = 31) 02,8105 + (1 —$1)0y)
0 0
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+G (31(91 + (1 - 81)(92,(1 — 31)83 + 8134)] ds; dS]
1 1

+f f e 0171 [Gy (1 - T31) 8 + T105,8105 + (1 — 1) 3y)
0 0

+G ((1 - 51)(91 + 31(92,(1 - S1)a3 + 3184)] ds; dSl}

In order to determine our results, we can adjust the variable and perform different computations:

(1 B 6_61)(1 B 6_62)(} d1+0, 05+ 0,
5,0, ‘( 2 72 )

1 f()z f'u 0 gy—x) ~026,—
< e Ve wm (VG (x, y)dxd
P4<az—al><a4—ag>{ 0 Jo R

R A=A = PP
+f f e o Ve m VTG (x, y)dxdy
o Jo

PN g Sy
+f f e e VG (x, y)dxdy
0 03

T Sheean SR -0
+ e o e ~ G (x, y)dxdy
o Jo

_ 6,6, 00 ot
40, — 01)(Ds — 03) |35, -G1(02,04) + 371", G1(82,03)

+300% .Gi(01,00) + 31" _Gi(01,05)].

O

This proves the first part of the main theorem. For the second part, again considering Definition 2.5,
we have

G (8101 + (1 =31) 02,8105 + (1 = 81) 04) <,3181G1(01,03) + 51 (1 — T1) G1(02, 03)

+31 (1 = 81)G1(01,04) + (1 =81)) (1 = T1) G1(05, 04),
Gy (83101 +(1=31)0,,(1 =81) 03 +5104) <, 31 (1 =81) G1(01,03) + (1 = s1) (1 = T1) G1(05,03)

+ 3181G1(01,04) + (1 = 81) 81G1(02,04),
Gi((1=31)01 +310,,8105 + (1 =81)04) < (1 = 81)51G1(01,03) + 3181G1(0>, 03)

+(1=31) (1 -81)G(01,04) + 31 (1 = 81) G1(0, 04),

as well as

G1 ((1 - 81)81 + 8162,(1 - s1)83 + 3184) Sp (1 - 51)(1 - S1)G1(01,03) + 81 (1 - S1)G1(02,83)
+ S4 (1 - S])G](61,84) + 5181G1(62,04).

Adding the aforementioned relationships, it deduces that

G, (8161 + (1 — 81)62,5163 + (1 - S1)(94) + Gy (51(9] + (1 - 51)(92,(1 — S1)(93 + 5164)
+ G] ((1 - 31)81 + 3162,5163 + (1 - S1)64) + G1 ((1 - 51)61 + 5162,(1 - S1)(?3 + 5184)
<pG1(01,03) + G1(02,03) + G (01, 04) + G1(02, 04). (3.2)
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Multiply aforementioned relation with e ~%251_ then integrate the resultant output about (3, s1),

and we get

1 1
f f e M 31e 1[Gy (310) + (1 = 51) 02,8105 + (1 — 81) 0a)
0 0
+G1 (5161 + (1 - 81)82,(1 - 31)63 + 3164)] dS1 dﬁl

1 1
+f f 6_61516_6281 [G1 ((1 - 81)61 + 51(92, 3163
0 0
+(1 - 31)64) + G1 ((1 - 51)01 + 8162,(1 - 31)83 + 3164)] dS1 dffl

1l
<p f f e M 31e 1[G (81, 83) + G1(0s, 83) + G1(01, 84) + G1(0s, 84)1ds dT ;.
0 Jo

Changing the variables results in
(1-6)(1-6) [@e.,ez
4(1 —e ) (1 —ed2) Yoo
30 .Gi(01,09) + I, Gi(81,5)]
< G1(91,03) + G1(02,83) + G1(01,04) + G1(02, 04)
Sp ) )

Consequently, Theorem 3.1 is proved.

Gi(@2, 02) + 3%, _G1(82,95)

Remark 3.1. e Ifone has 6, — 1,0, — 1 with G, # G, we get the following result by authors
in[18].

O, +0, 05+ 04) 1 0 f64
G , > Gy (x, y)dxd
! ( 2 > ) 2@ =@ —ay ), S, SV
DGl(ala 03) + G1(02,03) + G1(01, 04) + G1(02,04)
> ; .

e [fone has 6, — 1,0, — 1 with G, = G, we get the following result by the author in [17].

61+62 03+04) 1 02 faA
G , < G (x,y)dxd
! ( 2 2 )SG oG o Sy, Jy, SEVEY
<G1((91, 03) + G1(02,03) + G1(01,04) + G1(02, 04)
< 1 .

e Ifone has G, = Gy, we get the following result which is fresh as well.

01 +0, 03 +04
G ( 2 2 )
(=600 =0 o
~4(1 - 6‘61)(1 — 6_62) 8,+.05"
+3I0% .Gi(D1,00) + I Gi(61,05)]
<G1((91, 03) + G1(0,,03) + G1(01,04) + G1(02, 64).
B 4

Gi(d2,04) + 3,2 G132, 33)
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Example 3.1 Let Gi(x,y) = [4e%e®, (8 + €*) (7 + €")|,[01, 2] = [0,11,[05,04] = [0, 11,6, = 1, and
6, = 1, then one has

01+ 0, 03+ 0,
G ( 2 2
(I =01 - 6) [@91,92
4(1—e ) (1 —e®) Vara'
+30% 1Gi(01,05) + I _Gi(91,05)| ~ [126.27,77.55],
G1(02,03) + G1(04, 03) + G1(02, 04) + G1(01,04)
4

) ~ [52.17,45.77],

Gi(d2,94) + 3% ~Gi1(32,03)

~ [250.66, 110.19].

Thus,

[52.17,45.771<,[126.27,77.55]<,[250.66, 110.19].

Fejér type double fractional Pseudo order relations

Theorem 3.2. Let G, : [04,0,] X [% 0,1 € R? — R* be an interval-valued coordinated convex
function defined as G, = [Gi(X,y), Gi(x,y)] with 0 < 0y < 8,,0 < 03 < 4. If the mapping ¢ :
[01,0,] X [03,04] € R* = R is symmetric, then one has

@(01 + 02 — X, y),
SD(X’ }’) = QO(X’ a3 + a4 - Y)’
<p(61 + (92 - x,83 + 84 - y),

then we have

01+0, 0;+0
Gl( 12 2 32 4)[3311;”f33+<p(62,64)+3g'1’f’284_¢(32,a3)

+30 (D1, 00) + (61, 05)|

< |35 G102, 0)¢(0s, 0s) + 37, G183, 03)p(8s, 3)

+30% (G101, 0)¢(D1, 0a) + 30" G (91, 03)(01, 05|
< G1(01,05) + G1(02,03) + G1(01,04) + G1(02, 04) [

+30 (@1, 00) + 3001, 05)).

I (D2, 00) + I (6, 05)

Proof. By virtue of the following result (3.1) in Theorem 3.1, and on both sides multiplying with

AIMS Mathematics Volume 9, Issue 6, 16061-16092.
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4e %1810 (F,01+ (1 = J,) 05,8105 + (1 — 1) d,4) and integrating, one has

81+62 63+64
2 2

1 1
4G, ( )f f 6_61316_6281Q0(5161 + (1 - 81)82,3183 +(1 - 31)84) ds; dgl
0 0

1 pl
Spf f 6_61316_628190(8161 + (1 - 51)62,3183 + (1 - S1)64)
0 Jo
X [G1 (810, + (1 = 81) 05,8105 + (1 —=81)34) + G (T101 + (1 = T}) 05, (1 = 81) 03 + 5104)] dsy T,

1 1
+ f f 6_61316_62s1g0(3161 + (1 - 51)62,8103 + (1 - 31)84)
0 0
X [G] ((1 - 81)(9] + 8162,3163 + (1 - 31)84) + Gy ((1 - 51)01 + 31(92,(1 — 51)63 +S184)] ds; d:‘]

In order to determine our results, we can adjust the variable and perform different computations

0 + 0, 53+(94) 4 % fa“ S0 gty 125,25
G s e 9 27¢ e @ 4 G ,6 ’6 déd
1( 2 2 )@ =000 =09 sy, s, (& O)p(€, 6)dode

1-6

! fz f4 (- J = ()
S e 2 e o 4 G ,5 ’5 d6
p(az—al)(a4—a3){ o Jo, 1€, 0)p(&, 6)dode

02 da 1o 1-6
+ f f e @O m G (& )€, By + 0y — 6)d6dE
01 03

1-6;

02 04 1-6
’ f f e EWeH GG (£, 5)p(d) + 0, — £ 5)d5dE
0 0

1-6;

> 04 -
+ f f e‘w@‘al)e‘%“‘@Gl(g, 8)p(d1 + 0y — &,03 + 04 — 5)d5dg}
0 93

6,6
=00 a0 [0 5.01(02.006(02,00) + 33, G1(02 03¢0, 05)
90 = , ,

+33]2’_6’263+G1 (01, 04)9(01,04) + 32‘2’-6,254-(}1 (01,03)p(01, 33)] :

As ¢(X,y) is symmetry, one has

1 + 0 a3+a4) 4 ﬁ f gy 2, )
G : e~ 2w GG (£ §)p(£, 6)dd
1( 2 2 J(02=01)04—33) Js, Jo, 160l “

6,6, 81 + 82 83 + 84 ~01.0 ~0..0
=’ ( s )[\5611{,340(52,84) + 350, -p(9,03)

+30 (@1, 00) + 3001, 05)).

The initial relation is therefore concluded. For the second part, consider result (3.2) present in
Theorem 3.1, and on both sides multiply with e 21 91e ™51 (3,0, + (1 — J,) 05,8105 + (1 — 51) d4) and
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integrate, one has

1 1
f f e 0 T1e™81, (5,0, + (1 — T,) 02,5105 + (1 —81) ds)
0 0
X [G] (5181 + (1 - 81)32,3163 + (1 - 31)84) + Gy (31(91 + (1 - 31)82,(1 - 81)83 + 3184)] ds; dgl

1 1
+ f f e 3e™%10 (5,0) + (1 = 31) 35,8105 + (1 — 8¢) 3y)
0 0
X [G] ((1 - 51)(91 + 3162,8103 + (1 - S1)a4) + G] ((1 - 81)61 + 8132,(1 - 31)83 + 3184)] dS1 d81

s

Spf f e T1e %10 (3,0) + (1 = 31) 05,8105 + (1 — $1) 34)
o Jo

X [G1(0y,03) + G1(02, 03) + G1(01, 04) + G1(02, 04)]ds; dT,.

Changing the variables results in

6,6, [
(02 = 01)(04 — 03)
+30% (G101, 0)¢(D1, 0a) + T G (91, 03)p(81, 03) |

< G1(01,03) + G1(02,03) + G1(01,04) + G1(9,,04)

I G1(2, 04)p(D2, Bs) + TSZ‘I’%A‘_Gl(az, 33)¢(0,, 0)

017.03"

X o |35 (0, 00) + 2 002, 03) + I 0(D1,04) + 3%, (601, 85))
(82 _ 31)(54 _ 63) 017,03 017,04 927,03 027,04
Consequently, Theorem 3.2 is verfied. O

Remark 3.2. e Seiting G, = G, we get the following result which is new as well, that is,

01+0, 03+0
Gl( 12 . 32 4)[‘@5311%&90(62’64)+331.’+6,Za490(02’03)

+30 (@1, 00) + I (61, 03))
<[30 G1(@2. B2, 1) + 30 _Gi(D2. D26, )

3% G101, (@1, 09) + I, _Gi(01,03)¢(01, 85) |
G1(01,03) + G1(05,03) + G{(01,04) + G1(05, 0 ~0; ~6;
< 1(01,03) 1(02 3)4 1(01,04) 1(02,04) [ng’ffa3+90(52’04)+\531’+H,234—90(52’53)

+Sglz’f)2’a%+‘10(al ’ a4) + 331219’2 QO(al, 83)] .

v

o Setting symmetric weight function ¢(x,y) = 1 with 6; — 1,6, — 1 and G, = Gy, we get the
following result obtained in [17]. -

e Setting 0, — 1,6, — 1, we get the following result obtained in [44].

o Setting 6; — 1,0, — 1 with G, # G, we get the following result obtained in [18].

We have now established a H.H-type inequality with regards to the midpoint type intervals.
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Theorem 3.3. Considering the same hypothesis of Theorem 3.1, we get the following double relations:

0\+0, 0:+0 1-6)1 -6
Gl( 12 2, 3 : 4)Sp ( ;)( 2)6 [3(M)+ (M)+Gl(82,04)
(- )fi-en) O
+$61’92 —G (62$ a";) + Ry Gl(al’ 64) + 6162 _G1(31,33)

[ 22 e (e
< G1(81,05)* + Gy (32, 532) + G1(01,04) + G1(02,04)
>p 1 .

01 +dy (73 03+04
2 2

Proof. Since Gyis an interval-valued coordinated convex function, for instance, if one takes x = %61 +
%mﬁz,y = %81 + %62, u=30;+ 2 04w = 2 =103 + 304, then one has

Gl(x+y u+w)_Gl(c’)1+02 (93+(94)

2 2 2 72
J 2-9 s 2-s N 2-9 2-s s
—P4 Gl(zlal D) ]62’3163"' 2 164)‘|'G1(2101 3 ]52, > 163+E164)
2-9 J 2-s 2-9 N 2-s s
+G1( o o, S0 2 134)+G1( 31,1 3, 2251, +3164)].

o [
Multiplying the above relation with e 231 75 and integrating, one has

G (‘9”‘92 ‘93+‘94)f f 331 gs, 49,
2 — 2 -
|:f f Sle 62 S1 |:G1( (91 + S;1(92, (93 + 281 (94)

2-9 2 —
G1 ( 81 182, St 83 + 83104)] dS1 dﬁl

2 2

Lo 52 S 25

2-3 9y, 2-s s
+ 1( 5 ]a 7162, > 16 +E164)]d81 dﬁl]
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In order to determine our results, we can adjust the variable and perform different computations

662 2

-6 (0r— x) ( —y)
B e G (x, y)dxd
p(aZ - a1)(64 - 63) {jjﬂ?z ﬁ3+54 ( Y) y

03+04

2 0
" e~ 911(02 Ye 92 2(y- 03)G (x, y)dxdy
Jd1+0p 9

5, 5
4(l—e 2)(1_6 Z)G (314‘32 33+34)

4 1-6 16
~ 79 (x=0, ) ) (04-y)
+ 5 ﬁ e o 2 G (x,y)dxdy

d1+0p 03+0,
2 2

1-0; 3
+ e a (x— (71)6 92 (y %)G (X y)dXdy}
o1 03

6,0
2 [39""2 G1(02, 0y) + 300 G1(2,05)

=000 [y o e (o

+36"62 G1(01,04) +3 Ryt

(2 (a2 V(e ()

This proves the first part of the main theorem. For the second part, again consider Definition 2.5,
and we have

G] (al > 83)

29 2
152, —03 L2751

3 1
G1( =19, + )sz [3151G1(01,03) + 51 (2 = T1) G1(02,03)

+31(2-51)G1(01,04) + (2 —-51)) (2 — T1) G1(02, 04)]

N 2-3 2-5s s 1
G1(7181+ > L9, > 153+%&)sz[51(2—51)G1(31,33)+(2—S1)(2—51)G1(52,33)

+3181G1(01,04) + (2 = 31)51G (01, 04)]

2-9 J S 2-s
G1( > 131+7152,§103+ 21 )—p4[(2 31)81G1(01,03) + 3151G1(02,03)

+(2-31)2-51)G1(01,04) + F1 (2 = 51) G1(02,04)]

2-9 N 2-5s 1
Gl( S0+ 7‘62, S0 ‘64)sp1[(2—51)s1Gl<al,63>+51s1Gl<az,ag)

+(2-31)2-51)G1(01,04) + 31 (2 = 51) G1(02,04)]

2-9 N 2—-s S
Gl( 3 Lo, + _152, 2‘a+ P )_p4[(2 I)2=51)Gi(01,03) + I, (2 = 581) G1(02,03)

+51(2 = 81)G1(01,04) + 3151G1(0,,04)] .
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Adding the aforementioned relations, we get

81 2—31 S1 2 -84 51 2—51 2 — 84 S1
Gl( > (91 > 82, 26 3 04 +G1 3 (91 D 02, 3 03+384

2_ 9 3 2 -9 g, 2-
Lo, + laz, 2t + 8184)+G1( Lo, + —102, S1a+%1a4)

+G1( 5

<pG1(01,03) + G(0,03) + Gl(al ,04) + G1(02,04).

[ 5
Multiplying aforementioned relation with ™2 31e~ 7 then integrating, one has

| 3 2—5 2 —
ff 6316 b [Gl( Lo > 1(92,%1(93+ 23154)

2 - 2 —
+G; ( (91 81 02, 5t 0 —84)] ds; dﬁl

2 2 2 2
1 3 2-9 3 S 2-s
[ eterlo o g )
2-9 J 2-s S
G ( 3 16 —1(92, 3 1(9 + 31(94)] ds; dS]

1ol
<p f f e %1 E9[G (1, 85) + G1(02, 35) + G1 (1, 04) + G (82, Ap)]ds; AT,
0 Jo

Changing the variables results in

6,0, ~61.0 o
4(0, — 01)(04 — 03) [\5(;'“2'292)+,("3;"4)+G1(62’ 0a) + (:9 +23 ) (a3+04) G1(0,,03)

+3(al+az) (03+04)*G1(01, a4) +J3 @E)Lefdz) (M)—Gl(al’ a3)
G1(01,03) + G1(0,,03) + G1(01,04) + G1(02,04)
Sp ) )

Consequently, Theorem 3.3 is proved. O

Remark 3.3. e Ifone has 6, — 1,6, — 1, we get the following result by the authors in [18].
e Ifone has 6, — 1,6, — 1 with G, = Gy, we get the following result by author in [17].

Example 3.2. Let G(X,y) = [(2X +2)(2y +2)4e™e¥, (2 +3e0) (2 + 3ey)] , 01,021 =10, 1],[05,04] =
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[0,1],6; = 1, then one has

(91 + (92 (93 + (94

G ( 2 7 2
(1-6)1 -6,) 016
2) | (2o 2)

4(1-e?)(1-e%
+36;,Hfa ~ (05+ *G1(61’63) + 3922 ~ [ 03+
e 9 ey 9
G1(02,03) + G1(04,03) + G1(02, 04) + G1(01, 04)
4

) ~ [270.12,90.12],

+G1(<91,<93) +37 G1(01,04)

91 +0 @l d3+0y
2 ) \T 2 )

-G4(01,05)| = [310.13,153.12],

~ [350.33,179.45].

Thus,
[270.12,90.12]<,[310.13, 153.12]<,[350.33, 179.45].

Theorem 3.4. Let G, F, : [0y, az]i [05,04] € R*> = Ri* be an interval-valued coordinated convex
Junction defined as G, = [Gi1(X,y), Gi(x, y)] and F; = [Q(x, y), (X, y)] where 0 < 0; < 0,,0 < 05 < 0.
Then one has the following relations:

6’1Q2 ~01,0 01,02
(62 ~ 61)(64 — (93) [‘561+,63+G1(82’ 64)1:1(82, 84) + \551+’64—G1(62a 63)F1(82’ 63)

+30% G101, 0)F1(D1,04) + I, Gi(61,05)F (91, 03)

<pA1AC(0,, 02,03, 04) + A1B,D(01,0,,03,04) + A2BE(01, 0, 03,04) + B1B,Y(91,0,, 03, 04),

where

26, + 672 + 4 — (291 +67 + 4) e
Ai = 23 ., B
i

-4 +26+ (26, + 4) e
= e ,

C(01,0,03,04) = G1(01,03)F(01,03) + G1(01,04)F (01, 04) + G1(02, 03)F (02, 03) + G(02,04)F (02, 04),
D(01, 01, 03,04) = G1(01,03)F (01, 04) + G1(01,04)F1(01, 03) + G1(02, 03)F (02, 04) + G1(02, 04)F (02, 03),
E(01, 0,,03,04) = G1(01,03)F1(02,03) + G1(01, 04)F (02, 04) + G1(02, 03)F1(01,03) + G1(0,04)F (01, 04),

and
Y (01, 0,,03,04) = G1(01,03)F (02, 04)+G (01, 04)F (02, 03)+G (02, 03)F (01, 04)+G (02, 04)F (01, 03).

Proof. As Gy, F; are interval-valued coordinated convex functions, then one has
Gix(y) : [03,04] = Ri", Gix(y) = Gi(X,y), Fix(y) : [03,04] — Ri",Fi,(y) = Fi(x,y), also
Giy(x) : [01,0:] = Ri",Giy(x) = Gi(X,y), F1y(x) : [01,02] = Ri",F1y(x) = Fi(x,y)
for each x € [0,,0,] accompanying y € [d3,04]. Now, by virtue of the Theorem 2.4 within this
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reference [45], we may have

1
04— 03
0y” = 20, + 4 = (8,7 + 20, + 4) e ™

5,

20, -4+ (20, +4)e™®

+ 3
(o))

04 16y 04 e,
[f‘Q&WMWC@@w®+jVGNWMwe%W®®
a3

03

<p

[G1x(03)F1x(03) + G1x(04)F14(04)]

[Glx(a3)le(84) + Glx(64)le(a3)] .

This can be written as

1
9, — O
5,2 — 28, + 4 — (622 + 28, + 4) e
5,°
28, — 4+ (28, + 4) e
+
5,°

0
Y,y F d R YR F
e~ Gi(x,y)Fi(x,y)dy + e ” Gi(x, y)Fi(x,y)dy
03

03

<

p [Gi(X, 03)F1(X,03) + Gi(X, 04)F1(X, 04)]

[Gi(X,03)F (X, 04) + Gi(X, 04)F (X, 03)].

- (x=01)

L(2-x) 1 . :
and 5—-¢ and integrating, one has

Multiplying the above relation with —e it

32 (0s g
o (02— }’) (34 VR X, V)G (x, y)dxd
(0> — 1)((94 - 03) [f f 1 (% Y)Gi (. y)dxdy

+f fd e lf*fl(‘%_")e_;zz(y_‘%)Gl(x,y)Fl(x,y)dxdy]
a Jos

8" =28, +4— (87 +28, +4)e™ % iy,
3 f e 1 U[G(x, 03)F (%, 03) + Gi(x, 04)F (X, 04)]dx
82°(02 — 01) o

20, — 4 20 4)e % 20
b e fﬁeﬁwzkmx&m@ﬁo+&@ﬁMMxmmm
01

<p

8,°(02 — 1)
and
|:f62 f34 1-6; (x— 6|) 2(64_y)G ( )F ( )d d
e 7 X, X, y)dx
@—o@—@ 1%, Y)T1%, yIEREY
0 1-6
+ f f e 0 2(y_a3)G1()(, y)Fi(x, y)dxdy]
8 Jos
5,2 — 20, +4 - (622 +20, +4)e o ;
= 5,0 few““W@%m@%H&@mm@mmx
2 (02 — 01

252 —4+ 2%+ 4) 2 fﬁ %(X_Bl)[Gl(X, 03)F (X, 04) + G1(X, 04)F (X, 03)]dx.
62 (62 - 1) 9

Summing the above two relations, one has

0,6
5= 01;(;4 ) [@gl 925 -G1(92, 04)F (02, 04) + 32‘ 92@ -G1(02, 03)F1(0,, 03)
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+30% G101, 0)F1(01,00) + 3% G1(31,05)F1(3),05))
0,7 = 20, + 4 — (8, + 20, + 4) e b G (3 SO (3 5
S 0 R) ]+ ’ F ’
P 5@ 00 1{[‘561 1(02,03)F (05, 03)

+37 G101, 03)F1 (01, 05)| + |37 .G1(32, 04)F1(03, 8s) + 3]G (D1, 0u)F1 (31, 04) |}
_ -2
N 20, 4: (20, +4)e o, {[
0,7(02 — 01)
+35-G1(31, 03)F1(31, 0)| + |3 .G1 (B2, 0)F1 (82, 33) + 3} Gi(91, 0)F1 (01, B3)]} . (3.3)

33‘1+G1(52, 03)F1(05, 04)

This also indicates that
L[s"l G1(8,, 03)F (83, 03) + 37 _G,(0;,03)F, (0 a)]
62 — 61 ot 1\U2, 03 1\U2, 03 &y~ 1 1,03 1 1,03
5,7 =28, +4 - (8, +20, +4)e™
<
p 6]3
28, — 4+ (28, +4)e™
+ 5 3
1

[G1(01, 03)F1(01,03) + G1(02,03)F (0>, 03)]

[G1(01, 03)F (02, 03) + G1(02, 03)F1(01, 03)], (3.4)

0
T (30 G102, 00F (02,00 + - Gr(01.0)F 101,00

8,7 =28, +4 - (8, +20, +4)e™
<
p 613
25, — 4+ (20, +4) e
+ 5 3
1

[G1(01,04)F1(01,04) + G1(92, 04)F1(02, 04)]

[G1(01, 04)F (02, 04) + G1(02,04)F1(01, 04)], (3.5)

0
57 [0 G102, 0F1(02,09) + 37, Ga(01,09)F (01, 00)
5,7 =20, +4 - (8, +20, +4)e™

<
P 613

25, — 4+ (20, +4)e™

+ 5 3
1

[G1(01,03)F1(01,04) + G1(92, 03)F1(02,04)]

[G1(01, 03)F (02, 04) + G1(02, 03)F1(01, 04)],
3.6)

and

0
—[30, G182, 04)F1(02, 05) + 37 _G1(91, 04)F1 (1, 053)
(92 - (91 ! e

8,7 =28, +4 - (8, +20, +4)e™
<
p 613
25, — 4+ (20, +4) e
+ 5 3
1

[G1(01,04)F1(01,03) + G1(92, 04)F1(01,03)]

[G1(01, 04)F1(02,03) + G(02,04)F (01, 03)]. 3.7
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Substituting the relations (3.4)—(3.7) into (3.3), we get final output.
O

Remark 3.4. o [fone has 0, — 1,0, — 1 withG, # G and F, # F,, we get the following result by
the authors in [18].

1 ) 04
G (x, y)F;(x, y)dxd
<az—al)<a4—ag>fal fa (%, Y)Fy(x, y)dxdy

1 1 1
Q§C(31, 01,03,04) + E[D(al, 02,03,04) + E(01,0,,03,04)] + %\P(al, 01,03, 04).

e Ifone has 6, — 1,0, — 1 with G, = G, and F, = F,, we get the following result by the author
in [46].

1
(02 — 01)(04 — 03)

1 1
S§C(51, 0,,03,04) + 1—8[D(51, 01,03,04) + E(01,0,,03,04)] + %‘P(al, 01,03, 04).

04
f Gi(x, y)Fi(x, y)dxdy

e [fone has 6, — 1,0, — 1, we get the following result by the authors in [44].

Theorem 3.5. Considering the same hypothesis of Theorem 3.4, we get the following double relations:

(91+(92 63+64 61+62 83+64
461(2,2)F1(2,2)
< (I -6, -6y [c»(i],(iz
—P4(1 —e ) (1 —e ) Varmas"
+30% 1Gi(01,00) + I _Gi(01,5)]
+ 1@z + @182 + @21 C(1, 02, 05, 04) + @12 + @182 + B182] D(01, 02, 05, 0s)
+ (@12 + @B + BB E(01, 02,03, 04) + (@12 + @231 + B1B2| W (01, 02, 03, 0s),

G1(02,04) + C:Sg' 026 -G (0,2, 03)

where
246+ +2)e" 20, + 6% +4 - (9i2 +4+ 29i) e
62(1—e®% 7' 262 (1 —e™)
Proof. Since G, and F; are interval-valued coordinated convex functions and considering Theorem 2.5
from the reference [45], one has

ap =

2G1 81+82,03+04 F, 81+82’83+84
2 2 2 2
1- 91 ~0 83 + 84 83 + 84 ~0 (93 + (94 63 + 64
_pm[ 1Gl (32, > )Fl (82, > ) ,912G1 R > Fi (0, >
03+ 0 05+ 0 0+ 0 03+ 04|
+a |Gy (31, 2 3 4)F1 (51, s 3 4)+G1 (52, 2 3 4)F1 (52, s 3 4)_
+ 51 |Gy (52, 83584)1:1 (31,63584)4‘(}1 (31,63564)1:1 (32, 63-2“94) (3.8)
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and
2G1 81+82’63+64 F, 61+62,83+84
2 2 2 2
1 - 92 ~0 81 + 82 (91 + (92 ~0 (91 + (92 61 + 62
_pm[ Ry Gl( > 84)F1( > ,34) J,.-Gi > , 03| Fy > , 05
0, +0 0,+0 0, +0 0,+0
+ @ Gl( 12 2,53)F1( 12 2,33)+G1( 12 2,54)F1( 12 2,34)]
+5 |Gy (‘9‘ ;az,ag)m (‘9‘ 2‘92,64) + G, (‘9‘ ;32,64)& (‘9‘ ;‘92,63)]. (3.9)

Summing the relations (3.8) and (3.9), then multiplying the result by constant 2, we get that

81+62 83+84 (91+(92 83+84
F
1-0, ~0 83 + 84 83 + 84 ~0 83 + 84 63 + 04
_pm [2\58:+G1 (52, 2 )Fl (62, > ) + 2\58‘27G1 a1, 2 Fi |01, 3
1-6
b2 lzo@z G, (51 ‘;52 64) F, (31 582,64) 4 zsei G, (51 + 0, 83) F, (31 + 62,83)]
83+84)F1 (93+(94 ( (93+(94)F1 (93+(94)—

+ 812G, (31,

(91+(92
2

+ ,32 2G1 (
This further implies that

03+ 0 O3+ 0
261(61, 32 “)Fl(a], 32 “)

Spﬁ [332+G1(31, 04)F1(01,04) + 3?,2-(}1(51, d3)F (04, 33)]

+ a[G (01, 03)F1(01,03) + G1(01, 04)F (01, 04)]
+ B21G1(01,03)F1(01,04) + G1(01, 04)F (01, 03)1, (3.10)

03+ 0 03+ 0
261(62, 32 “)Fl(az, 32 “)
1-6,
< - =
P2 (1- eé)[

+ @2[G(02, 03)F (02, 03) + G1(02,04)F (02, 04)]

3%.G1(8, 04)F (83, 04) + 37-G1(D2, 05)F1 (92, 05|
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+ B21G1(02, 03)F (02, 04) + G1(02, 04)F (02, 05)], (3.11)

2G1 ((91 +82,63)F1 ((91 +(92,a3)

2 2
1-6

Spm [\561 G1(02,03)F(0,,05) + Sf,‘ _G1(01,03)F,(04, 53)]
+ a1[G(d1,03)F (01, 03) + G1(02,03)F (0,2, 03)]
+ B11G1(02, 03)F (01, 83) + G1(d1, 03)F (02, 05)1,

0 +0 0 +0
2G1( 12 2,04)F1( 12 2,04)

1-6,
—P2(1 e ) [
+ a1[G(01,04)F1(01,04) + G1(02, 04)F(0,,04)]
+ B11G1(02, 04)F (01, 04) + G1(01, 04)F (2, 04)1,

Oz +0 0z +0
2G, (a],%)rw (32, i “)

5ZI+G1(32, 04)F1(02,04) + Sgl 1G1(01,04)F (01, 54)]

1-6,
<3 =)
+ a[G (01, 03)F (02, 03) + G1(01, 04)F (02, 04)]
+ B21G1(01, 03)F1(02, 04) + G1(01, 04)F (02, 05)1,

2G, (32, % ; ‘9“)1& (al, 05 t ‘9“)

[’92 G1(01,04)F1(0,04) + 332-(31(51, 93)F1(02, (93)]

2

1-6,
SETaEr=s1
+ @2[G1(02, 03)F1(01, 83) + G1(02, 04)F (1, 04)]
+ B2[G1(02, 03)F1(01, 04) + G1(02, 04)F (01, 03)],

0, +0 0, +0
2G1( Lt 2,53)F1( Lt 2,34)

37.G1(02, 0)F1(01, 0) + 372G (8, 03)F (91, 03)

2

1-6
<p2(1 16|) [Sgﬂ 1(02, 05)F1(02, 04) + 3?7 1(51,53)1:1(51,34)]

+ a1[G1(01,03)F (01, 04) + G1(02,03)F (02, 04)]
+ B1lG1(02,03)F (01, 04) + G1(01,05)F (02, 04)],

0 +0 0 +0
2G1( 12 2,84)F1 (%,83)

1-6,
3o |
+ 1[G (01, 04)F1(01,03) + G1(02, 04)F(0,, 03)]
+ B11G1(02, 04)F1(01, 03) + G1(01, 04)F (2, 03)].

331 +G1(02, 04)F1 (02, 03) + SZ‘ -G1(91, 04)F1(01, 63)]
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Substituting the above relations into the relation (3), it follows that

61+82 83+84 61+62 83+04
o (P52 B (A5 55

1- 91 ~0, (93 + (94 (93 + (94 ~0, (93 + (94 (93 + (94
_pm [2 .Gy (52, 3 )Fl (52, > ) + 2\5627(31 (51, 2 )Fl (31, > )

1 -
6, [2092 G, (M, 54)1:] (31 ; 02,54) +230.G,y (‘91 i 82,63)13] (61 . 62,63)]

EIES)) 2 2 2
2(11_ 02)6;1) [@92 G1(01,04)F1(01,04) + 322-G1(<91, 93)F1 (01, 05)
+39,2+G1(52, 04)F1(02,04) + 36;2-(}1(32, 93)F1 (05, 33)]
2 a 92)_@) |302.G1(81, 04)F (3, 04) + 32 -G (01, 03)F1 (02, 03)
+‘Sa -+G1(02,04)F1(01,04) + 332- 1002, 93)F1 (01, (93)]
2(11_ i )_0;2) [ogl G1(92,05)F1(0,03) + i‘sZt 1(01,93)F (01, 05)
+37.G1(9s, 04)F1 (02, 0) + 372G (91, 02)F1 (01, 0s) |
(A -600p

20 -e) [@01 G1(02,04)F1(0,,05) + 3ZI-G1(31,34)F1(51,53)

+3991+ 1((92, 83)F1(62, 84) + 3 @91 1(61, 83)F1 (01, 04)]
+ 2a1a2C(0y, 0,03, 04) + 2a1ﬁ2D(81, 83,03, 04) + 2281 E (81, 02, 03, 03) + 2818,V (81, 0, 33, Os).

It follows that

03+ 0 0+ 0
2331+G1 (32, 32 4)F1 (52, 32 4)

1-6
T e [0 §1 @200 + 3.1, G1(02,09)]

+ @ [\531+G1(62’ 33)F1(02,05) + TSZ] .G1(02,04)F(0a, (94)]
+ 2| 35.G1(92, 03)F1 (82, 0) + 3. G1 (D2, a)F1 (6, B5)

1-6
sz (1 i(’)z) [C‘gl 626 +Gl (ala (94) + Sgl 626 _G](al, 8’5)]

+ @ [\55 -G1(01,03)F(01,05) + 331- 1(01,04)F1 (01, (94)]
+ B2 |35-G1(01, 03)F1(81,04) + 3G (81, 04)F (01, 85)]
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233§+F(‘91 ;52,94)& (51 252,04)

1-6
gpz(l_—eg,) [0 G1(02.04) + 30, .G1(81.04)]

+ [32§+G1 (01,04)F (01, 04) + 3323+G1(52, 04)F(0,, (94)]
+ 1 [37.Gi(01, 0a)F1(02, 00) + 3. G1(9, 0)F1 (91, 0)

2331F(81 . 62,63)1:1 (31 ;az,as)

2

1-6
Sy [ 010209 + 3%, 101,09

+ a1 |37 Gi(81, 03)F1(91,05) + 3 G1(92, 03)F1 (02, 05)|
+ 13- G1(91, 03)F (82, 83) + 372G (82, 05)F1 (91, 35)

Summing the above relations, it follows that

(91+(92 (93+(94F 01+ 0, 63+64
2 2 U2 2

1-6)0-60) .00 o
=3 (1—ed)(1—e) [‘561+,253+G1(82’ 04) + 3,7 -G1(92,03)

R G010+ S, G030
(1 -60)a,

l—e®

+SZ§+G1(62, 04)F1(02,04) + Sgi_Gl(az, 03)F (05, 63)]

8G, (

[32+G1(61’ 04)F1(01,04) + 32131(51 ,03)F1(04, 03)

1-6
+ L2150 G0, 000F (32, 01) + 3Gy (01, 09)F (82, )

| —e™®
+3323+G1 (02,04)F(01,04) + Sgi_Gl (02, 03)F (0, 63)]
1 -6)a
L L0 |35 G1(02, 2)F1(85,83) + 3. G1(31, 03)F (91, 8s)

- _61
1 e

+35,G1(02, 02)F1 (02, 00) + 3} _Gi1(91, 0)F1 (91, 0]

1-6
+ O (50 G @2, 00F 102, 05) + 3G (01,0001, )
—e 1 1 2

+3?1+G1 (02,05)F (02, 04) + SZL—GI (01,03)F, (91, 54)]
+ 2a1a,C(04, 02, 03) + 2, 8,D(81, 0, 03, 04)
+ 2a/2ﬁ1E(01, 32, 03) + 2,81,82‘1’(61, (92, (93)

As a result, Theorem 3.5 is accomplished.
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Remark 3.5. e [fone has 0, — 1,0, - 1 withG, # G, and F, # F,, we get the following result by
the authors in [18].

01+02 83+84)F ((91+(92 83+04)

b

(‘92 - 1)((94 - 03) f f G (x, y)F(x, y)dxdy

2
+ —C(al, 01,03,04) + _[D(al, 01,03,04) + E(01,0,,03,04)] + \P(al, 01,03, 04).

0 (25

e Ifone has 6, — 1,6, — 1 with G, = G, and F, = F,, we get the following result by the author
in [46].

4G1(81 ;—62 63 +84)F (61 ;—62’63 +64)

_(82 - 1)(54 —03) fd f G (x, y)Fi(x, y)dxdy

+ _C(al, 0,,03,04) + —[D(al, 01,03,04) + E(01,0,,03,04)] + \P(al, 01,03, 04).

e [fone has 6, — 1,0, — 1, we get the following result by the authors in [44].

Theorem 3.6. Considering the same hypothesis of Theorem 3.1, we get the following double relations:

01 +0, 0z +0 1-6 03 +0 03 +0
G]( 1 2 3 4)< 1 cw01 Gl (62, 3 4) SZIZ_Gl (61, 3 4)

2 T2 )ad-en Y 2 2
1 - 92 ~0, 01 + 32 ~0, 61 + 62
m [ G] (Taall) +\564_G] T’a3

1-6)(1-6
Sp4(1( _ e‘gl))((l — ;)_62) [Tf; 626 +G1(02,04) + 3?,‘ 023 -G1(02,05) + 3? 926 +G1(01,04) + 331 92@ -G1(51,33)]

1-6
g e 900102 00) + 37.Gi(02.00) + 3-G1(81. ) + 3G (61.99)|

t 30 e [3.G1(01, 00) + 372, G1(02,00) + 377G (91, 3) + 3G (02, 05) |

< G191, 53) + G1(01,03) + G1(01,0,) + G1(02,04)
=p 1 .
Proof. As G, is an interval-valued coordinated convex function, it follows that G, : [03,04] —
R, G1x(y) = Gi(x,y) are convex over [d3, d4] for each x € [0, 0,], and we have

GIX( 2 )sz (1 _ 6—62) [ l')i_'_GlX(aZ) + 2 Glx(83)] 2 , X

This indicates that

0y + 0 1-6 1 (% 1o, 1 (% 16
6 (3 r e [9_2f: A A T
3 3

< Gi(x,03) + Gi(x,04)
=p 2 .

(3.12)

€ [619 a2]
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1-6
Multiplying the above relation with %Ee T and 2(11::-161 ) G]—Ie_#(’(_a') and integrating, one
has )
1-6; 1 2 - 91 (92—x) 63 + 04
—— G, d
21— g, fa ¢ 2 )
(1 -6)(1-6) gy g
=4 —e-al)(l —e ) e e e m G (x, y)dndy
1-6
06, f e (y_63)G1(X, y)dxdy]
162 05
1—91 RN 1 faz -2 9y
ST G (x, B5)dx + — @G, (x, By)dx |,
PA(l—e) [91 fi e 106, B)dx + o L 1(x, 0p)dx
and

1-9, 1 Iy 03+a4
— G d
2(1-e)g, fa ¢ e

(1-6)(1 - 6y) 1 > (s L vet) - 2 0imp)
S‘”4(1—(3—61)(1_e—esz) 00 & O G (v, y)dxdy

04
f ¢ g0 6‘)6 1%, y)dde]
0192 03

1—9 2 e 1 (% e,
1 [e f) e a])Gl(Xa53)dX+9_f e Gy (x, dy)dx| .
1 (1

_p4(1 —e™0r) 1 Ja,

By a similar argument applied on the mapping Gy, : [0, d2] — R, Gy = Gy(X,y), it yields that

1-6, 1 (* - 52(04-y) 01+0,
e - G, y]d
2(1—e—6z)92fa3 © 2 )Y

(1-6)1 -6,) f f L 02) = 2 04-y)
< g
A —e-él)(l —e ™) [elaz ¢ G y)dxdy

) o
zf e 10]1(7‘ 51) - (34 Y)G (x, y)dxdy]
9192 03

1-6, 22 94y) L R ECTPR
0 e m N yGl(é‘l,y)dy+9—f e 2 “VG(0y, y)dy|,
2

_p4(1 —e %) o
and )
1-6, 1 (™ gy, (01+0
— VG [——=.y|d
2(1—e) 6, L ¢ 2 Y

1-0)1-6) [ 1 f’z f"‘* Gy 2 y-0)
< 7 % G (x,y)dxd
—p4(1 — 6—51)(1 — e—ﬁz) [0162 o & © © 1(x Y) *

0
f 4 e_%(x 01) 922 (y_aS)Gl(X, y)dXdY]
9192 93

1- 92 _ﬂ( —3) 1 % _Lhy g
[9 o YG(0), y)dy + Q_f e 2 TG(0,, y)dy]|.
2 2

‘p4(1 —e%) 4

Adding the above relations, we get
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1-6 ~0 83 + 04 ~0 63 + 04
m [\Sall+G1 (52, T) + \Salszl 1, 3

1- (92 ~0 (91 + (92 ~0 (91 + (92
+ —4(1 P [\%i*Gl (—2 ,54) + \Sai—Gl ( 2 ,53)l
(U000
TP —ed) (1 —e) Voo

+3312l9?53+G1(31, 04) + 3312’_6’264_G1(81, (93)]
-6,

Sp—g =) [3311+G1(82, 03) + SglﬁGl(az, 04) + SZIZ—Gl(al, 03) + 3;12—G1(61 ) 64)]
1-6
+ 8(1——6:26) [372.G1(31,04) + 3. G1(32,00) + 372 G1(01,03) + 372G (02,05

G1(02,04) + TSZ'}’%“_Gl (02,05)

The second and third relations in Theorem 3.6 are thus obtained. We may ascertain that by applying
the first relation from Theorem 3.3,

— 02 -0
G, ((91 +0, 03+ 84) < 1-6, [ 1 f e_lgill(az_x)Gl (X, 0 + 04)dx
01

2 0 2 )TP2(1-ed) |6, 2
1 (% o A3+ 0
+— e n G | x, 3+ 04 dx|,
61 Js, 2
and
01+ 0y (93+(94 1-6, 1fd4 ~L% 5,y 0, + 0y
G , < - oG, (D22 g
1( 2 2 ) P2(1_e_62) [92 " c 7 1 D) ylay
1 4 _ﬂ(y_(')}) 0, + 0y
+— ? G |——,y|dy|.
6 Js, e 1 2 yay
By addition,

0+, 0;+0 1-6 03+ 0 03+ 0
Gl( 1 +0; 03+ 4)< _1 [3311+G1(62, 3+ 4)4_3912 Gl(al, 3+ 4)]

2 7 2 P41 —e® 2 9" 2
1—92 ~0 81 +82 ~0 81 +82
+m[\)a§+G1 (7,34)"‘\)5‘(}1 > ,03]].

The first relation in Theorem 3.6 is therefore inferred. Lastly, once more, we have
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1-6 1 (%2 1o, 1 210y
‘ [ f e ")Gl(x,ag)dx+9— f e 81)Gl(x,a3)dx]
1

2(1—e) | 6; Jy, 5
< G1(01, 03) + G1(0,,03)
_p 2 b)
1-6 1 (2 o, 1 (%2 o
2(1—6161) |:0—f € 6|1(62 X)GI(X’ (94)dX+ H_f € gll(x 81)G1(X, 64)dX:|
- 1 Ja, 1 Ja,
< G1(01,04) + G1(02,04)
1-6 1 (% 1w, 1 (% e
TS ef@) [9— f e y>Gl(al,y)dy+9— f e n 03)G1(01,y)dy]
- 2 Jos 2 Jo;
< G1(01,03) + G1(01,04)
_p 2 b)
1-0 1 (% o, 1 (% e
TS ;62) [9_f e % G (0, y)dy + H_f e Y a3)(}1(('3’2,}’)d)/]
- 2 (73 2 (93
< G1(0,,03) + G1(0,,04)

Therefore, the proof of Theorem 3.6 is verfied.

Remark 3.6. o [fwe take 6, — 1,6, — 1, then one has

I 1-6 1

im = ,

01—1 4(1 —6_6‘) 4((92 —(91)
. 1-6, 1

lim

ol 4(1—e2)  4(Ds— 03)’

L -6 !
gl_)i 4(1 - 66') (1 - 662) 4((92 - (91)(64 - 53),

and we get the following result by the authors in [18].

e Ifone has 6, — 1,0, — 1 with G| = Gy, we get the following result by the authors in [17].

O +0, d3+0,\ 1 1 f62 d3 + 0, 1 ff’4 o) + 0,
G : <— G x, d G
1( 2 2 ) 2[02—01 P T e R e I

< 1
(02 — 01)(04 — 03) Jy

1 1 2 1 2
<= Gi(x, 85)d G(x,8,)d
_4[62—611;1 1(x, 3)X+82—81£ 1(X, 04)dx

1 . 1 :
+ Gi(01,y)dy + fG v,y)d
84_83[: 1001, y)dy 5= o, i( y)y]

<G1((91, 03) + G1(02,03) + G1(01,04) + G1(0,,04)
< 1 )

& s
f G (x, y)dxdy
1 03

o
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4. Discussion and conclusions

Fractional calculus and convex optimization are two strong mathematical techniques with numerous
applications in a variety of domains. We are mainly focusing on generalizing the results of these
articles [17, 18, 44, 46] that the authors have recently developed by using classical integral operators
and order relations. A number of recently developed results have been achieved using partial order,
standard order relations, and classical integral operators, which are all special cases of pseudo order
relations along with fractional operators having non-singular kernels.

As a part of our key results, we constructed H.H, Fejér, and Pachpatte type integral inequalities.
Further, we first fixed some notions related to standard, partial interval, and pseudo order relations in
order to demonstrate the differences between all these relations, as well as remarks on all main findings.
This motivation inspired us to suggest a unique and fresh idea for readers to apply this novel approach
regarding stochastic integration that involves Brownian motion to develop these results that is,

t
ﬁ FdB = I}l_)fg Z Fti—l (Bti - Bti—l) >

[ti—1,tilem

where dB is Brownian motion.
This study’s findings are anticipated to have a substantial influence on inequality and the
development of optimization theory.
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