Research article Special Issues

Hyperideal-based zero-divisor graph of the general hyperring $ \mathbb{Z}_{n} $

  • Received: 05 March 2024 Revised: 27 April 2024 Accepted: 28 April 2024 Published: 06 May 2024
  • MSC : 13A70, 16Y20

  • The aim of this paper is to introduce and study the concept of a hyperideal-based zero-divisor graph associated with a general hyperring. This is a generalized version of the zero-divisor graph associated with a commutative ring. For any general hyperring $ R $ having a hyperideal $ I $, the $ I $-based zero-divisor graph $ \Gamma^{(I)}(R) $ associated with $ R $ is the simple graph whose vertices are the elements of $ R\setminus I $ having their hyperproduct in $ I $, and two distinct vertices are joined by an edge when their hyperproduct has a non-empty intersection with $ I $. In the first part of the paper, we concentrate on some general properties of this graph related to absorbing elements, while the second part is dedicated to the study of the $ I $-based zero-divisor graph associated to the general hyperring $ \mathbb{Z}_n $ of the integers modulo $ n $, when $ n = 2p^mq $, with $ p $ and $ q $ two different odd primes, and fixing the hyperideal $ I $.

    Citation: Mohammad Hamidi, Irina Cristea. Hyperideal-based zero-divisor graph of the general hyperring $ \mathbb{Z}_{n} $[J]. AIMS Mathematics, 2024, 9(6): 15891-15910. doi: 10.3934/math.2024768

    Related Papers:

  • The aim of this paper is to introduce and study the concept of a hyperideal-based zero-divisor graph associated with a general hyperring. This is a generalized version of the zero-divisor graph associated with a commutative ring. For any general hyperring $ R $ having a hyperideal $ I $, the $ I $-based zero-divisor graph $ \Gamma^{(I)}(R) $ associated with $ R $ is the simple graph whose vertices are the elements of $ R\setminus I $ having their hyperproduct in $ I $, and two distinct vertices are joined by an edge when their hyperproduct has a non-empty intersection with $ I $. In the first part of the paper, we concentrate on some general properties of this graph related to absorbing elements, while the second part is dedicated to the study of the $ I $-based zero-divisor graph associated to the general hyperring $ \mathbb{Z}_n $ of the integers modulo $ n $, when $ n = 2p^mq $, with $ p $ and $ q $ two different odd primes, and fixing the hyperideal $ I $.



    加载中


    [1] M. Al-Tahan, B. Davvaz, Hypergroups defined on hypergraphs and their regular relations, Kragujev. J. Math., 46 (2022), 487–498. https://doi.org/10.46793/KgJMat2203.487T doi: 10.46793/KgJMat2203.487T
    [2] D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447. https://doi.org/10.1006/jabr.1998.7840 doi: 10.1006/jabr.1998.7840
    [3] R. Ameri, M. Hamidi, H. Mohammadi, Hyperideals of $($Finite$)$ General hyperrings, Math. Interdisc. Res., 6 (2021), 257–273. https://doi.org/10.22052/MIR.2021.240436.1269 doi: 10.22052/MIR.2021.240436.1269
    [4] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208–226. https://doi.org/10.1016/0021-8693(88)90202-5 doi: 10.1016/0021-8693(88)90202-5
    [5] A. Cayley, Desiderata and suggestions: No. 2. The Theory of groups: graphical representation, Am. J. Math., 1 (1878), 174–176. https://doi.org/10.2307/2369306 doi: 10.2307/2369306
    [6] P. J. Cameron, What can graphs and algebraic structures say to each other? AKCE Int. J. Graphs Co., 2023, 1–6. https://doi.org/10.1080/09728600.2023.2290036 doi: 10.1080/09728600.2023.2290036
    [7] G. A. Cannon, K. M. Neuerburg, S. P. Redmond, Zero-divisor graphs of nearrings and semigroups, In: Nearrings and nearfields, Dordrecht: Springer, 2005,189–200. https://doi.org/10.1007/1-4020-3391-5_8
    [8] P. Corsini, Hypergraphs and hypergroups, Algebr. Univ., 35 (1996), 548–555. https://doi.org/10.1007/BF01243594 doi: 10.1007/BF01243594
    [9] I. Cristea, M. Kankaraš, The reducibility concept in general hyperrings, Mathematics, 9 (2021), 2037. https://doi.org/10.3390/math9172037 doi: 10.3390/math9172037
    [10] B. Davvaz, V. Leoreanu-Fotea, Hyperring theory and applications, USA: International Academic Press, 2007.
    [11] F. R. DeMeyer, T. McKenzie, K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum, 65 (2002), 206–214. https://doi.org/10.1007/s002330010128 doi: 10.1007/s002330010128
    [12] D. Dolžan, P. Oblak, The zero-divisor graphs of rings and semirings, Int. J. Algebr. Comput., 22 (2012), 1250033. https://doi.org/10.1142/S0218196712500336 doi: 10.1142/S0218196712500336
    [13] S. E. Atani, An ideal based zero-divisor graph of a commutative semiring, Glas. Mat., 44 (2009), 141–153.
    [14] M. Hamidi, R. Ameri, H. Mohammadi, Hyperideal-based intersection graphs, Indian J. Pure Appl. Math., 54 (2023), 120–132. https://doi.org/10.1007/s13226-022-00238-5 doi: 10.1007/s13226-022-00238-5
    [15] M. Hamidi, A. B. Saeid, Graphs derived from multirings, Soft Comput., 25 (2021), 13921–13932. https://doi.org/10.1007/s00500-021-06361-5 doi: 10.1007/s00500-021-06361-5
    [16] M. Hamidi, A. B. Saeid, On Derivable Tree, Trans. Comb., 8 (2019), 21–43.
    [17] M. Iranmanesh, M. Jafarpour, I. Cristea, The non-commuting graph of a non-central hypergroup, Open Math., 17 (2019), 1035–1044. https://doi.org/10.1515/math-2019-0084 doi: 10.1515/math-2019-0084
    [18] S. Jančic-Rašovic, About the hyperring of polynomials, It. J. Pure Appl. Math., 21 (2007), 223–234.
    [19] A. Kalampakas, S. Spartalis, A. Tsikgas, The path hyperoperation, An. St. Univ. Ovidius Const. Ser. Mat., 22 (2014), 141–153.
    [20] A. Kalampakas, S. Spartalis, Path hypergroupoids: Commutativity and graph connectivity, Eur. J. Combin., 44 (2015), 257–264. https://doi.org/10.1016/j.ejc.2014.08.012 doi: 10.1016/j.ejc.2014.08.012
    [21] M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. Math. Sci., 6 (1983), 240850 https://doi.org/10.1155/S0161171283000265 doi: 10.1155/S0161171283000265
    [22] R. Levy, J. Shapiro, The zero-divisor graph of a Von Neumann regular ring, Comm. Algebra, 30 (2002), 745–750. https://doi.org/10.1081/AGB-120013178 doi: 10.1081/AGB-120013178
    [23] G. Massouros, C. Massouros, Hypercompositional algebra, computer science and geometry, Mathematics, 8 (2020), 1338. https://doi.org/10.3390/math8081338 doi: 10.3390/math8081338
    [24] C. G. Massouros, On path hypercompositions in graphs and automata, In: MATEC Web of Conferences, 2016, 05003. https://doi.org/10.1051/matecconf/20164105003
    [25] C. G. Massouros, G. G. Massouros, Hypergroups associated with graphs and automata, In: Proceedings of the International Conference on Numerical Analysis and Applied Mathematics, 2009,164–167.
    [26] C. G. Massouros, G. G. Massouros, On the borderline of fields and hyperfields, Mathematics, 11 (2023), 1289. https://doi.org/10.3390/math11061289 doi: 10.3390/math11061289
    [27] E. Mehdi-Nezhad, A.M. Rahimi, A note on $k$-zero-divisor hypergraphs of some commutative rings, Ital. J. Pure Appl. Mat., 50 (2023), 495–502.
    [28] S. M. Mirafzal, The automorphism group of the Andrasfai graph, Discrete Math. Lett., 10 (2022) 60–63. https://doi.org/10.47443/dml.2022.016 doi: 10.47443/dml.2022.016
    [29] J. Mittas, Hypergroupes canoniques hypervalues, C. R. Acad. Sci., 271 (1970), 4–7.
    [30] A. Nikkhah, B. Davvaz, S. Mirvakili, Hypergroups constructed from hypergraphs, Filomat, 32 (2018), 3487–3494. https://doi.org/10.2298/FIL1810487N doi: 10.2298/FIL1810487N
    [31] S. P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commun. Rings, 1 (2002), 203–211.
    [32] S. P. Redmond, An Ideal-based zero-divisor graph of a commutative ring, Commun. Algebra, 31 (2003), 4425–4443. https://doi.org/10.1081/AGB-120022801 doi: 10.1081/AGB-120022801
    [33] S. Spartalis, A class of hyperrings, Riv. Math. Pura Appl., 4 (1989), 55–64.
    [34] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield. In: Proceedings of the 4th International Congress on Algebraic Hyperstructures and Applications, Singapore: World Scientific Publishing, 1991, 203–211.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(486) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog