In this paper, we introduce novel extensions of the reversed Minkowski inequality for various functions defined on time scales. Our approach involves the application of Jensen's and Hölder's inequalities on time scales. Our results encompass the continuous inequalities established by Benaissa as special cases when the time scale $ \mathbb{T} $ corresponds to the real numbers (when $ \mathbb{T = R} $). Additionally, we derive distinct inequalities within the realm of time scale calculus, such as cases $ \mathbb{ T = N} $ and $ q^{\mathbb{N}} $ for $ q > 1 $. These findings represent new and significant contributions for the reader.
Citation: Elkhateeb S. Aly, A. I. Saied, I. Ibedou, Mohamed S. Algolam, Wael W. Mohammed. Some new generalizations of reversed Minkowski's inequality for several functions via time scales[J]. AIMS Mathematics, 2024, 9(5): 11156-11179. doi: 10.3934/math.2024547
In this paper, we introduce novel extensions of the reversed Minkowski inequality for various functions defined on time scales. Our approach involves the application of Jensen's and Hölder's inequalities on time scales. Our results encompass the continuous inequalities established by Benaissa as special cases when the time scale $ \mathbb{T} $ corresponds to the real numbers (when $ \mathbb{T = R} $). Additionally, we derive distinct inequalities within the realm of time scale calculus, such as cases $ \mathbb{ T = N} $ and $ q^{\mathbb{N}} $ for $ q > 1 $. These findings represent new and significant contributions for the reader.
[1] | O. Hölder, Uber einen Mittelwerthssatz, Nachr. Ges. Wiss. Gottingen, 1889 (1889), 38–47. http://eudml.org/doc/180218 |
[2] | J. Canto, Sharp Reverse Hölder inequality for weights and applications, J. Geom. Anal., 31 (2021), 4165–4190. https://doi.org/10.1007/s12220-020-00430-1. doi: 10.1007/s12220-020-00430-1 |
[3] | X. Yang, Refinement of Hölder inequality and application to Ostrowski inequality, Appl. Math. Comput., 138 (2003), 455–461. https://doi.org/10.1016/S0096-3003(02)00159-5 doi: 10.1016/S0096-3003(02)00159-5 |
[4] | C. L. Wang, Applications of variants of the Hölder inequality and its inverses: Extensions of Barnes, Marshall-Olkin, and Nehari inequalities, Can. Math. Bull., 21 (1978), 347–354. https://doi.org/10.4153/CMB-1978-060-3 doi: 10.4153/CMB-1978-060-3 |
[5] | L. Liu, J. Zheng, G. Bao, Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, Discrete Cont. Dyn.-S., 25 (2020), 3437–3460. https://doi.org/10.3934/dcdsb.2020068 doi: 10.3934/dcdsb.2020068 |
[6] | T. Köppl, E. Vidotto, B. Wohlmuth, P. Zunino, Mathematical modeling, analysis and numerical approximation of second-order elliptic problems with inclusions, Math. Mod. Meth. Appl. S., 28 (2018), 953–978. https://doi.org/10.1142/S0218202518500252 doi: 10.1142/S0218202518500252 |
[7] | M. Shoaib, M. Sarwar, Multi-valued common N-tupled fixed point result and their applications to system of N-integral equations, J. Math. Anal. Model., 4 (2023), 1–15. https://doi.org/10.48185/jmam.v4i2.806 doi: 10.48185/jmam.v4i2.806 |
[8] | M. S. Alhaj, Mathematical model for dengue fever with vertical transmission and control measures: Dengue fever model, J. Math. Anal. Model., 4 (2023), 44–58. https://doi.org/10.48185/jmam.v4i2.841 doi: 10.48185/jmam.v4i2.841 |
[9] | W. T. Sulaiman, Reverses of Minkowski's, Hölder's, and Hardy's integral inequalities, Int. J. Mod. Math. Sci., 1 (2012), 14–24. |
[10] | B. Sroysang, More on reverses of Minkowski's integral inequality, Math. Aeterna, 3 (2013), 597–600. |
[11] | B. Benaissa, More on reverses of Minkowski's inequalities and Hardy's integral inequalities, Asian-Eur. J. Math., 13 (2020), 1–7. https://doi.org/10.1142/S1793557120500643 doi: 10.1142/S1793557120500643 |
[12] | B. Bouharket, A further generalization of the reverse Minkowski type inequality via Hölder and Jensen inequalities, J. Sib. Fed. Univ.-Math., 15 (2022), 319–328. https://doi.org/10.17516/1997-1397-2022-15-3-319-328 doi: 10.17516/1997-1397-2022-15-3-319-328 |
[13] | M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Boston: Birkhäuser, 2001. https://doi.org/10.1007/978-1-4612-0201-1 |
[14] | A. K. I. N. Lütfi, On some integral type inequality on time scales, In: Conference Proceedings of Science and Technology, 3 (2020), 141–144. Available from: https://dergipark.org.tr/tr/download/article-file/1218548. |
[15] | G. Alnemer, A. I. Saied, M. Zakarya, H. A. Abd El-Hamid, O. Bazighifan, H. M. Rezk, Some new reverse Hilbert's inequalities on time scales, Symmetry, 13 (2021), 2431. https://doi.org/10.3390/sym13122431 doi: 10.3390/sym13122431 |
[16] | E. Awwad, A. I. Saied, Some new multidimensional Hardy-type inequalities with general kernels on time scales, J. Math. Inequal., 16 (2022), 393–412. https://doi.org/10.7153/jmi-2022-16-29 doi: 10.7153/jmi-2022-16-29 |
[17] | R. Bibi, M. Bohner, J. Pečarić, S. Varošanec, Minkowski and Beckenbach-Dresher inequalities and functionals on time scales, J. Math. Inequal., 7 (2013), 299–312. https://doi.org/10.7153/jmi-07-28 doi: 10.7153/jmi-07-28 |
[18] | M. Bohner, S. G. Georgiev, Multiple integration on time scales, Multivariable dynamic calculus on time scales, Springer, 2016,449–515. https://doi.org/10.1007/978-3-319-47620-9 |
[19] | P. Řehak, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 942973. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495 |
[20] | H. M. Rezk, W. Albalawi, H. A. Abd El-Hamid, A. I. Saied, O. Bazighifan, M. S. Mohamed, et al., Hardy-Leindler-type inequalities via conformable delta fractional calculus, J. Funct. Space., 2022 (2022), 2399182. https://doi.org/10.1155/2022/2399182 doi: 10.1155/2022/2399182 |
[21] | S. H. Saker, A. I. Saied, M. Krnić, Some new dynamic Hardy-type inequalities with kernels involving monotone functions, Racsam. Rev. R. Acad. A, 114 (2020), 142. https://doi.org/10.1007/s13398-020-00876-6 doi: 10.1007/s13398-020-00876-6 |
[22] | S. H. Saker, A. I. Saied, M. Krnić, Some new weighted dynamic inequalities for monotone functions involving kernels, Mediterr. J. Math., 17 (2020), 39. https://doi.org/10.1007/s00009-020-1473-0 doi: 10.1007/s00009-020-1473-0 |
[23] | S. H. Saker, J. Alzabut, A. I. Saied, D. O'Regan, New characterizations of weights on dynamic inequalities involving a Hardy operator, J. Inequal. Appl., 2021 (2021), 73. https://doi.org/10.1186/s13660-021-02606-x doi: 10.1186/s13660-021-02606-x |
[24] | S. H. Saker, A. I. Saied, D. R. Anderson, Some new characterizations of weights in dynamic inequalities involving monotonic functions, Qual. Theor. Dyn. Syst., 20 (2021), 49. https://doi.org/10.1007/s12346-021-00489-3 doi: 10.1007/s12346-021-00489-3 |
[25] | M. Zakarya, G. AlNemer, A. I. Saied, R. Butush, O. Bazighifan, H. M. Rezk, Generalized inequalities of Hilbert-type on time scales Nabla calculus, Symmetry, 14 (2022), 1512. https://doi.org/10.3390/sym14081512 doi: 10.3390/sym14081512 |
[26] | M. Zakarya, A. I. Saied, G. ALNemer, H. A. Abd El-Hamid, H. M. Rezk, A study on some new generalizations of reversed dynamic inequalities of Hilbert-type via supermultiplicative functions, J. Funct. Space., 2022 (2022), 8720702. https://doi.org/10.1155/2022/8720702 doi: 10.1155/2022/8720702 |
[27] | E. S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, W. W. Mohammed, Some dynamic Hardy-type inequalities with negative parameters on time scales Nabla calculus, AIMS Math., 9 (2024), 5147–5170. https://doi.org/10.3934/math.2024250 doi: 10.3934/math.2024250 |
[28] | M. Zakarya, A. I. Saied, G. AlNemer, H. M. Rezk, A study on some new reverse Hilbert-type inequalities and its generalizations on time scales, J. Math., 2022 (2022), 6285367. https://doi.org/10.1155/2022/6285367 doi: 10.1155/2022/6285367 |
[29] | C. P. Jadhav, T. Dale, On Dirichlet problem of time-fractional advection-diffusion equation, J. Frac. Calc. Nonlinear Sys., 4 (2023), 1–13. https://doi.org/10.48185/jfcns.v4i2.861 doi: 10.48185/jfcns.v4i2.861 |
[30] | S. Kumbinarasaiah, R. Yeshwanth, Haar wavelet approach to study the control of biological pest model in Tea plants, J. Frac. Calc. Nonlinear Sys., 4 (2023), 14–30. https://doi.org/10.48185/jfcns.v4i2.862 doi: 10.48185/jfcns.v4i2.862 |
[31] | İ. Yaslan, Beta-fractional calculus on time scales, J. Frac. Calc. Nonlinear Sys., 4 (2023), 48–60. https://doi.org/10.48185/jfcns.v4i2.877 doi: 10.48185/jfcns.v4i2.877 |
[32] | A. M. Ahmed, A. I. Saied, M. Ali, M. Zakarya, H. M. Rezk, Generalized dynamic inequalities of Copson type on time scales, Symmetry, 16 (2024), 288. https://doi.org/10.3390/sym16030288 doi: 10.3390/sym16030288 |
[33] | M. Tamsir, M. J. Huntul, A numerical approach for solving Fisher's reaction-diffusion equation via a new kind of spline functions, Ain Shams Eng. J., 12 (2021), 3157–3165. https://doi.org/10.1016/j.asej.2020.11.024 doi: 10.1016/j.asej.2020.11.024 |
[34] | S. Bourazza, Evaluation of the operators of the genetic algorithm in application of the traveling salesman problem, Int. J. Adv. Res., 6 (2018), 42–52. http://dx.doi.org/10.21474/IJAR01/6406 doi: 10.21474/IJAR01/6406 |
[35] | M. J. Huntul, I. Tekin, An inverse problem of identifying the time-dependent potential and source terms in a two-dimensional parabolic equation, Hacet. J. Math. Stat., 52 (2023), 1578–1599. https://doi.org/10.15672/hujms.1118138 doi: 10.15672/hujms.1118138 |
[36] | R. P. Agarwal, D. O'Regan, S. H. Saker, Dynamic inequalities on time scales, New York: Springer Cham, 2014. https://doi.org/10.1007/978-3-319-11002-8 |