Research article Special Issues

On $ \psi $-convex functions and related inequalities

  • Received: 08 February 2024 Revised: 09 March 2024 Accepted: 11 March 2024 Published: 21 March 2024
  • MSC : 26A51, 26D15, 26D10

  • We introduce the class of $ \psi $-convex functions $ f:[0, \infty)\to \mathbb{R} $, where $ \psi\in C([0, 1]) $ satisfies $ \psi\geq 0 $ and $ \psi(0)\neq \psi(1) $. This class includes several types of convex functions introduced in previous works. We first study some properties of such functions. Next, we establish a double Hermite-Hadamard-type inequality involving $ \psi $-convex functions and a Simpson-type inequality for functions $ f\in C^1([0, \infty)) $ such that $ |f'| $ is $ \psi $-convex. Our obtained results are new and recover several existing results from the literature.

    Citation: Hassen Aydi, Bessem Samet, Manuel De la Sen. On $ \psi $-convex functions and related inequalities[J]. AIMS Mathematics, 2024, 9(5): 11139-11155. doi: 10.3934/math.2024546

    Related Papers:

  • We introduce the class of $ \psi $-convex functions $ f:[0, \infty)\to \mathbb{R} $, where $ \psi\in C([0, 1]) $ satisfies $ \psi\geq 0 $ and $ \psi(0)\neq \psi(1) $. This class includes several types of convex functions introduced in previous works. We first study some properties of such functions. Next, we establish a double Hermite-Hadamard-type inequality involving $ \psi $-convex functions and a Simpson-type inequality for functions $ f\in C^1([0, \infty)) $ such that $ |f'| $ is $ \psi $-convex. Our obtained results are new and recover several existing results from the literature.



    加载中


    [1] J. M. Borwein, J. D. Vanderwerff, Convex functions: Constructions, characterizations and counterexamples, Cambridge University Press, Cambridge, 2010.
    [2] R. Correa, A. Hantoute, M. A. López, Fundamentals of convex analysis and optimization, Springer, Cham, Switzerland, 2023
    [3] J. R. Giles, Convex analysis with application in the differentiation of convex functions, Pitman Publ., Boston-London-Melbourne, 1982.
    [4] C. P. Niculescu, L. E. Persson, Convex functions and their applications: A contemporary approach, Springer-Verlag, New York, 2006.
    [5] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, Boston, 1992.
    [6] R. R. Phelps, Convex functions, monotone operators and differentiability, 2 Eds., Springer-Verlag, New York, 1993.
    [7] A. W. Roberts, D. E. Varberg, Convex functions, Academic Press, New York, 1973.
    [8] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pure. Appl., 58 (1893), 171–215.
    [9] C. Hermite, Sur deux limites d'une intégrale défine, Mathesis, 3 (1983), 1–82.
    [10] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, Melbourne, 2000.
    [11] S. S. Dragomir, New inequalities of Hermite-Hadamard type for $\log$ convex functions, Khayyam J. Math., 3 (2017), 98–15. https://doi.org/10.22034/KJM.2017.47458 doi: 10.22034/KJM.2017.47458
    [12] B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for $s$-logarithmically convex functions, Acta Math. Sci. Ser. A (Chin. Ed.), 35 (2015), 515–524. https://doi.org/10.13140/RG.2.1.4385.9044 doi: 10.13140/RG.2.1.4385.9044
    [13] S. S. Dragomir, B. T. Torebek, Some Hermite-Hadamard type inequalities in the class of hyperbolic $p$-convex functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 113 (2019), 3413–3423. https://doi.org/10.1007/s13398-019-00708-2 doi: 10.1007/s13398-019-00708-2
    [14] M. Z. Sarikaya, M. E. Kiris, Some new inequalities of Hermite-Hadamard type for $s$-convex functions, Miskolc Math. Notes, 16 (2015), 491–501. https://doi.org/10.18514/MMN.2015.1099 doi: 10.18514/MMN.2015.1099
    [15] S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math., 5 (2001), 775–788. https://doi.org/10.11650/twjm/1500574995 doi: 10.11650/twjm/1500574995
    [16] B. Samet, On an implicit convexity concept and some integral inequalities, J. Inequal. Appl., 2016 (2016), 308. https://doi.org/10.1186/s13660-016-1253-3 doi: 10.1186/s13660-016-1253-3
    [17] P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for $F$-convex function involving fractional integrals, J. Inequal. Appl., 2018 (2018), 359. https://doi.org/10.1186/s13660-018-1950-1 doi: 10.1186/s13660-018-1950-1
    [18] H. Kalsoom, M. A. Latif, Z. A. Khan, M. Vivas-Cortez, Some new Hermite-Hadamard-Fejér fractional type inequalities for $h$-convex and harmonically $h$-convex interval-valued functions, Mathematics, 10 (2021), 74. https://doi.org/10.3390/math10010074 doi: 10.3390/math10010074
    [19] S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for $m$-convex functions, Tamkang J. Math., 3 (2002), 45–55.
    [20] H. Kadakal, $(m_1, m_2)$-convexity and some new Hermite-Hadamard type inequalities, Int. J. Math. Model. Comput., 9 (2019), 297–309. https://doi.org/10.13140/2.1.2919.7126 doi: 10.13140/2.1.2919.7126
    [21] M. K. Bakula, M. E. Özdemir, J. Pečarić, Hadamard-type inequalities for $m$-convex and $(\alpha, m)$-convex functions, J. Inequal. Pure Appl. Math., 9 (2007), 96. https://doi.org/10.1186/s13660-020-02442-5 doi: 10.1186/s13660-020-02442-5
    [22] H. Kadakal, $(\alpha, m_1, m_2)$-convexity and some inequalities of Hermite-Hadamard type, Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat., 68 (2019), 2128–2142. https://doi.org/10.31801/cfsuasmas.511184 doi: 10.31801/cfsuasmas.511184
    [23] S. Qaisar, C. He, S. Hussain, A generalization of Simpson's type inequality for differentiable functions using $(\alpha, m)$-convex functions and applications, J. Inequal. Appl., 2013 (2013), 1–13. https://doi.org/10.1186/1029-242X-2013-158 doi: 10.1186/1029-242X-2013-158
    [24] M. Alomari, M. Darus, On some inequalities of Simpson-type via quasi-convex functions and applications, Transylv. J. Math. Mech., 2 (2010), 15–24.
    [25] S. S. Dragomir, On Simpson's quadrature formula for mappings of bounded variation and applications, Tamkang J. Math., 30 (1999), 53–58.
    [26] V. N. Huy, Q. A. Ngô, New inequalities of Simpson-like type involving $n$ knots and the mth derivative, Math. Comput. Model., 52 (2010), 522–528. https://doi.org/10.1016/j.mcm.2010.03.049 doi: 10.1016/j.mcm.2010.03.049
    [27] Z. Liu, An inequality of Simpson type, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 2155–2158. https://doi.org/10.1098/rspa.2005.1505 doi: 10.1098/rspa.2005.1505
    [28] Z. Liu, Some sharp modified Simpson type inequalities and applications, Vietnam J. Math., 39 (2011), 135–144.
    [29] G. Toader, Some generalizations of the convexity, In: Proceedings of the Colloquium on Approximation and Optimization (Cluj-Napoca, 1985), Univ. Cluj-Napoca, Cluj, 1985,329–338.
    [30] V. G. Miheşan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, Romania, 1993.
    [31] T. Lara, J. Matkowski, N. Merentes, R. Quintero, M. Wróbel, A generalization of $m$-convexity and a sandwich theorem, Ann. Math. Silesianae, 31 (2017), 107–126. https://doi.org/10.1515/amsil-2017-0003 doi: 10.1515/amsil-2017-0003
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(872) PDF downloads(85) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog