Research article Special Issues

Solvability of product of $ n $-quadratic Hadamard-type fractional integral equations in Orlicz spaces

  • Received: 19 January 2024 Revised: 07 March 2024 Accepted: 12 March 2024 Published: 20 March 2024
  • MSC : 45G10, 46E30, 47H30, 47N20

  • The current study demonstrated and studied the existence of monotonic solutions, as well as the uniqueness of the solutions for a general and abstract form of a product of $ n $-quadratic fractional integral equations of Hadamard-type in Orlicz spaces $ L_\varphi $. We utilized the analysis of the measure of non-compactness associated with Darbo's fixed-point theorem and fractional calculus to obtain the results.

    Citation: Saud Fahad Aldosary, Mohamed M. A. Metwali. Solvability of product of $ n $-quadratic Hadamard-type fractional integral equations in Orlicz spaces[J]. AIMS Mathematics, 2024, 9(5): 11039-11050. doi: 10.3934/math.2024541

    Related Papers:

  • The current study demonstrated and studied the existence of monotonic solutions, as well as the uniqueness of the solutions for a general and abstract form of a product of $ n $-quadratic fractional integral equations of Hadamard-type in Orlicz spaces $ L_\varphi $. We utilized the analysis of the measure of non-compactness associated with Darbo's fixed-point theorem and fractional calculus to obtain the results.



    加载中


    [1] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009.
    [2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science, 1993.
    [3] H. M. Srivastava, R. K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput., 118 (2001), 1–52. https://doi.org/10.1016/S0096-3003(99)00208-8 doi: 10.1016/S0096-3003(99)00208-8
    [4] J. Hadamard, Essai sur l'étude des fonctions données par leur développment de Taylor, J. Math. Pures Appl., 8 (1892), 101–186.
    [5] A. M. Abdalla, H. A. H. Salem, On the monotonic solutions of quadratic integral equations in Orlicz space, J. Adv. Math. Comput. Sci., 30 (2019), 1–11. https://doi.org/10.9734/JAMCS/2019/46641 doi: 10.9734/JAMCS/2019/46641
    [6] A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Mathematics, 5 (2020), 259–272. https://doi.org/10.3934/math.2020017 doi: 10.3934/math.2020017
    [7] M. Cichoń, H. A. H. Salem On the solutions of Caputo-Hadamard Pettis-type fractional differential equations, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 113 (2019), 3031–3053. https://doi.org/10.1007/s13398-019-00671-y doi: 10.1007/s13398-019-00671-y
    [8] R. O'Neil, Fractional integration in Orlicz spaces. Ⅰ, Trans. Amer. Math. Soc., 115 (1965), 300–328. https://doi.org/10.1090/S0002-9947-1965-0194881-0 doi: 10.1090/S0002-9947-1965-0194881-0
    [9] J. Appell, M. Väth, Weakly singular Hammerstein-Volterra operators in Orlicz and Hölder spaces, Z. Anal. Anwend, 12 (1993), 663–676. https://doi.org/10.4171/ZAA/539 doi: 10.4171/ZAA/539
    [10] E. Nakai, On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type, Sci. Math. Jpn., 4 (2001), 901–915.
    [11] H. A. H. Salem, M. Cichon, Analysis of tempered fractional calculus in Hölder and Orlicz Spaces, Symmetry, 14 (2022), 1581. https://doi.org/10.3390/sym14081581 doi: 10.3390/sym14081581
    [12] M. Cichoń, M. Metwali, Existence of monotonic $L_\phi$-solutions for quadratic Volterra functionl integral equations, Electron. J. Qual. Theory Differ. Equ., 13 (2015), 1–16.
    [13] M. Metwali, On perturbed quadratic integral equations and initial value problem with nonlocal conditions in Orlicz spaces, Demonstratio Math., 53 (2020), 86–94. https://doi.org/10.1515/dema-2020-0052 doi: 10.1515/dema-2020-0052
    [14] I. Y. S. Cheng, J. J. Kozak, Application of the theory of Orlicz spaces to statistical mechanics. Ⅰ. Integral equations, J. Math. Phys., 13 (1972), 51–58. https://doi.org/10.1063/1.1665850 doi: 10.1063/1.1665850
    [15] M. A. Krasnosel'skii, Y. B. Rutitskii, Convex functions and Orlicz spaces, Gröningen: P. Noordhoff Ltd., 1961.
    [16] J. D. Weeks, S. A. Rice, J. J. Kozak, Analytic approach to the theory of phase transitions, J. Chem. Phys., 52 (1970), 2416–2426. https://doi.org/10.1063/1.1673324 doi: 10.1063/1.1673324
    [17] J. Caballero, A. B. Mingarelli, K. Sadarangani, Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer, Electron. J. Differ. Equ., 2006 (2006), 1–11.
    [18] S. Chandrasekhar, Radiative transfer, Dover Publications, 1960.
    [19] S. Hu, M. Khavani, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261–266. https://doi.org/10.1080/00036818908839899 doi: 10.1080/00036818908839899
    [20] A. Alsaadi, M. Cichoń, M. M. A. Metwali, Integrable solutions for Gripenberg-type equations with m-product of fractional operators and applications to initial value problems, Mathematics, 10 (2022), 1172. https://doi.org/10.3390/math10071172 doi: 10.3390/math10071172
    [21] H. H. G. Hashem, M. S. Zaki, Carthéodory theorem for quadratic integral equations of Erdélyi-Kober type, J. Fract. Calc. Appl., 4 (2013), 1–8.
    [22] M. M. A. Metwali, V. N. Mishra, On the measure of noncompactness in $L_p(\mathbb{R}^+)$ and applications to a product of $n$-integral equations, Turkish J. Math., 47 (2023), 372–386. https://doi.org/10.55730/1300-0098.3365 doi: 10.55730/1300-0098.3365
    [23] M. Cichoń, M. M. A. Metwali, On solutions of quadratic integral equations in Orlicz spaces, Mediterr. J. Math., 12 (2015), 901–920. https://doi.org/10.1007/s00009-014-0450-x doi: 10.1007/s00009-014-0450-x
    [24] E. Brestovanská, Qualitative behaviour of an integral equation related to some epidemic model, Demonstratio Math., 36 (2003), 603–609. https://doi.org/10.1515/dema-2003-0312 doi: 10.1515/dema-2003-0312
    [25] E. Brestovanská, M. Medve$\check{\rm{d}}$, Fixed point theorems of the Banach and Krasnosel'skii type for mappings on $m$-tuple Cartesian product of Banach algebras and systems of generalized Gripenberg's equations, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 51 (2012), 27–39.
    [26] M. M. A. Metwali, On fixed point theorems and applications to product of $n$-integral operators in ideal spaces, Fixed Point Theory, 23 (2022), 557–572. https://doi.org/10.24193/fpt-ro.2022.2.09 doi: 10.24193/fpt-ro.2022.2.09
    [27] M. M. A. Metwali, K. Cichoń, Solvability of the product of n-integral equations in Orlicz spaces, Rend. Circ. Mat. Palermo (2), 73 (2023), 171–187. https://doi.org/10.1007/s12215-023-00916-1 doi: 10.1007/s12215-023-00916-1
    [28] M. M. A. Metwali, On some properties of Riemann-Liouville fractional operator in Orlicz spaces and applications to quadratic integral equations, Filomat, 36 (2022), 6009–6020. https://doi.org/10.2298/FIL2217009M doi: 10.2298/FIL2217009M
    [29] M. M. A. Metwali, Solvability of quadratic Hadamard-type fractional integral equations in Orlicz spaces, Rocky Mountain J. Math., 53 (2023), 531–540. https://doi.org/10.1216/rmj.2023.53.531 doi: 10.1216/rmj.2023.53.531
    [30] M. M. A. Metwali, S. A. M. Alsallami, On Erdélyi-Kober fractional operator and quadratic integral equations in Orlicz spaces, Mathematics, 11 (2023), 3901. https://doi.org/10.3390/math11183901 doi: 10.3390/math11183901
    [31] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006), 1–523.
    [32] Ifronika, A. A. Masta, M. Nur, H. Gunawan, Generalized Hölder's inequality in Orlicz spaces, arXiv: 1809.00788v1, 2018. https://doi.org/10.48550/arXiv.1809.00788
    [33] N. Erzakova, Compactness in measure and measure of noncompactness, Sib. Math. J., 38 (1997), 926–928. https://doi.org/10.1007/BF02673034 doi: 10.1007/BF02673034
    [34] M. Väth, Volterra and integral equations of vector functions, CRC Press, 2000.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(666) PDF downloads(59) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog