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1. Introduction

The theory of fractional integral and differential equations has a fundamental role in several
branches of science, such as economics, biology, engineering, physics, electrical circuits, electro-
chemistry, earthquakes, fluid dynamics, traffic models, and viscoelasticity (cf. [1–3]).

Hadamard fractional integral operators were defined by Hadamard in 1892 [4]. These operators
have a kernel of logarithmic function of arbitrary order, which is not of convolution type. Consequently,
they should be examined separately from the more well-known Caputo and Riemann-Liouville
fractional operators. These types of operators have been studied by several researchers in numerous
function spaces. (cf. [5–7]).

The present work investigates and establishes the existence theorem as well as the uniqueness of
the solution to a general and abstract form of a product of n-quadratic fractional integral equations of
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Hadamard-type in Orlicz spaces Lϕ, which has the form

y(s) =

n∏
i=1

(
hi(s) + G2i(y)(s) +

G1i(y)(s)
Γ(αi)

·

∫ s

1

(
log

s
τ

)αi−1 G3i(y)(τ)
τ

dτ
)
, s ∈ [1, e], 0 < αi < 1, (1.1)

in arbitrary Orlicz spaces Lϕ, where G ji , j = 1, 2, 3 are general operators.
The theory of fractional calculus in Orlicz spaces was studied by O’Neill in 1965 [8], and,

subsequently, several interesting articles were published on this topic (see, for example, [9–11]).
Orlicz spaces Lϕ are suitable spaces for studying operators with strong nonlinearities (e.g.,

exponential growth) rather than polynomial growth in Lebesgue spaces Lp, p ≥ 1, (see [12, 13]).
These are motivated by some problems in statistical physics and mathematical physics (see [14, 15]).
In particular, the thermodynamics problem

y(s) +

∫
I
a(s, u) · ey(u) du = 0,

contains exponential nonlinearity (cf. [16]).
Moreover, quadratic integral equations have been applied in astrophysics, radiative transfer theory,

or neutron transport [17–19]. It should be noted that several kinds of quadratic integral equations
have been investigated in Lp spaces [20–22] and in Lϕ-spaces [12, 13, 23] using the measure of non-
compactness analysis associated with Darbo’s fixed-point hypothesis via different sets of assumptions.

It is useful to study the product of two or more than two operators, as mentioned by Medveď and
Brestovanská in [24, 25]; however, they consider the Banach algebras of continuous functions, which
have a different technique in the proof. Since Orlicz spaces are not Banach algebras, we use the
methods given in [26, 27] to obtain our results.

In [26], the author proved some fixed point theorems and employed them in examining the solution
of the equation

y(s) =

n∏
i=1

(
gi(s) +

∫ s

a
Ki(s, τ, y(τ)) dτ

)
,

in some types of ideal spaces like Lp, p > 1 and Orlicz spaces Lϕ(I), I = [a, b], where ϕ verifies the
∆2-condition.

In [27], the existence theorems for the product of n-integral equations operating on n-distinct Orlicz
spaces

y(s) =

n∏
i=1

(
gi(s) + λi · hi

(
s, y(s)

)
·

∫ b

a
Ki(s, τ) fi(τ, y(τ)) dτ

)
,

were discussed in Orlicz spaces Lϕ([a, b]), for n ≥ 2, when the function ϕ verifies the so-called ∆′, ∆3,

and ∆2-conditions.
The author in [28] demonstrated and proved some basic theorems for the Riemann-Liouville

fractional integral operator and investigated the existence theorems in Lϕ-spaces for the equation

y(s) = y(s) + G(y)(s)
∫ s

0

(s − τ)α−1

Γ(α)
f (τ, y(τ)) dτ, 0 < α < 1, s ∈ [0, d].
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In [29], some basic theorems were demonstrated and proved for the Hadamard fractional order
integral operator, and the existence theorems were also investigated for the equation:

y(s) = G3(y)(s) +
G1(y)(s)

Γ(α)

∫ s

1

(
log

s
τ

)α−1 G2(y)(τ)
τ

dτ, 0 < α < 1, s ∈ [1, e],

in Orlicz spaces Lϕ.
Basic theorems for the Erdélyi-Kober fractional order integral operator can be found, both

demonstrated and proved, in [30], where the existence theorems were also investigated for the
following equation:

y(s) = g(s) + f1(s, y(s)) + f2

(
s,
βh1(s, y(s))

Γ(α)
·

∫ s

0

τβ−1h2(τ, y(τ))
(sβ − τβ)1−α dτ

)
, s ∈ [0, d],

where 0 < α < 1 and β > 0 in both Lp and Lϕ spaces.
This paper is motivated by studying monotonic solutions for a general and abstract form of a product

of n-quadratic fractional integral equations of Hadamard-type in Orlicz spaces Lϕ. We provide two
existence theorems, namely (the existence and the uniqueness of) the solutions for Eq (1.1). The
measure of non-compactness and Darbo’s fixed point theorem are our main tools for examining the
obtained results.

2. Preliminaries

Let R+ = [0,∞) ⊂ R = (−∞,∞) and I = [1, e], e ≈ 2.718. A function M : [0,∞) → [0,∞) points
to a Young function if

M(τ) =

∫ τ

0
u(s)dt, for τ ≥ 0,

where u : [0,∞) → [0,∞) is a left-continuous-increasing function and is neither equal to infinite, nor
zero on R+. The functions N and M are referred to the complementary Young functions, if M(y) =

supz≥0(yz − N(y)). Furthermore, if M is finite-valued with limτ→0
M(τ)
τ

= 0, limτ→∞
M(τ)
τ

= ∞, and
M(τ) > 0 if τ > 0 (M(τ) = 0 ⇐⇒ τ = 0), then M is said to be an N-function.

The Orlicz space LM = LM(I) is the space of all measurable functions y : I → Rwith the Luxemburg
norm

‖y‖M = inf
ε>0

{∫
I

M
(
y(τ)
ε

)
dτ ≤ 1

}
.

Let EM = EM(I) contain the set of all bounded functions of LM and have absolutely continuous norms.

Definition 2.1. [31] The Hadamard-type fractional integral of an integrable function y of order α > 0
is given by

Jαy(s) =
1

Γ(α)

∫ s

1

(
log

s
τ

)α−1 y(τ)
τ

dτ, s > 1, α > 0,

where Γ(α) =
∫ ∞

0
e−ssα−1 ds.

Proposition 2.1. [5] The operator Jα maps a.e. nondecreasing and nonnegative functions to functions
of similar types.
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Lemma 2.1. [29] Assume, that M and N are complementary N-functions with
∫ s

0
M(τα−1) dτ <

∞, α ∈ (0, 1). Moreover, suppose that ϕ is N-function, where

k(s) =
1

ε
1

1−α

∫ sε
1

1−α

0
M(τα−1) dτ ∈ Eϕ

for a.e. τ ∈ I and ε > 0, then the operator Jα : LN → Lϕ is continuous and verifying

‖Jαy‖ϕ ≤
2

Γ(α)
‖k‖ϕ‖y‖N .

The following lemma characterizes the product of the operators in Lϕ:

Lemma 2.2. ( [32, Theorem 1]) Let n ≥ 2. If ϕ and ϕi, i = 1, · · · n are arbitrary N-functions, then the
following conditions are equivalent:

(1) For every ui ∈ Lϕi ,
∏n

i=1 ui ∈ Lϕ.
(2) There exists a constant K > 0 s.t. ∥∥∥∥∥ n∏

i=1

ui

∥∥∥∥∥
ϕ

≤ K
n∏

i=1

‖ui‖ϕi ,

for every ui ∈ Lϕi , i = 1, 2, · · · n.
(3) There exists a constant C > 0 s.t.

n∏
i=1

ϕ−1
i (s) ≤ Cϕ−1(s)

for every s ≥ 0.
(4) There exists a constant C > 0 s.t. ∀ si ≥ 0, i = 1, · · · n,

ϕ
(∏n

i=1 si

C

)
≤

n∑
i=1

ϕi(si).

Let S = S (I) refer to all Lebesgue measurable functions on the interval I. The set S concerning the
metric

d(y, z) = inf
ε>0

[ε + meas{τ : |y(τ) − z(τ)| ≥ ε}]

becomes a complete space, where “meas” points to the Lebesgue measure in R. The convergence
w.r. to d is identical to the convergence in measure on I (cf. Proposition 2.14 in [34]). We call the
compactness in S by “compactness in measure”.

Lemma 2.3. [23] Let Y ⊂ LM be a bounded set, and there is a family (Ωc)0≤c≤e−1 ⊂ I s.t. meas Ωc = c
for every c ∈ [1, e], and for every y ∈ Y,

y(s1) ≥ y(s2), (s1 ∈ Ωc, s2 < Ωc).

Thus, Y represents a compact in measure set in LM.
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Definition 2.2. [23] Let ∅ , Y ⊂ LM be bounded, then

βH(Y) = inf{r > 0 : ∃ a finite subset Z of LM s.t. Y ⊂ Z + Br },

is called the Hausdorff measure of non-compactness (MNC), where Br = {m ∈ LM : ‖m‖M ≤ r}.
The measure of equi-integrability c of the set Y ∈ LM is given by

c(Y) = lim
ε→0

sup
mesD≤ε

sup
y∈Y
‖y · χD‖LM ,

where ε > 0 and χD is the characteristic function of D ⊂ I (cf. [33] or [34]).

Lemma 2.4. [23, 33] Let ∅ , Y ⊂ EM provide a bounded and compact in measure set, then we have

βH(Y) = c(Y).

3. Main results

Rewrite Eq (1.1) as

y = B(y) =

n∏
i=1

Bi(y) =

n∏
i=1

(
hi + G2i(y) + Ui(y)

)
,

where
Ui(y) = G1i(y) · Ai(y), Ai(y) = Jαi

i G3i(y),

s.t. Jαi
i is as in Definition 2.1 and G ji(y) are general operators that act on some different Orlicz spaces

for j = 1, 2, 3 and i = 1, · · · , n.
Next, we discuss the existence of Lϕ solutions for Eq (1.1).

3.1. The existence of Lϕ-solutions

For i = 1, · · · , n, suppose that ϕ, ϕi, ϕ1i , ϕ2i are N-functions and that Ni, Mi are complementary
N-functions with

∫ s

0
Mi(ταi−1) dτ < ∞, αi ∈ (0, 1), and consider the assumptions:

(N1) There exists a constant K > 0 s.t. for every ui ∈ Lϕi , and we have ‖
∏n

i=1 ui‖ϕ ≤ K
∏n

i=1 ‖ui‖ϕi .
(N2) There exists a constant k1i > 0 such that for every u1 ∈ Lϕ1i

and u2 ∈ Lϕ2i
, we get ‖u1u2‖ϕi ≤

k1i‖u1‖ϕ1i
‖u2‖ϕ2i

.
(N3) The functions hi ∈ Eϕi are a.e. nondecreasing on the interval I.
(N4) G1i : Lϕ → Lϕ1i

take continuously Eϕ → Eϕ1i
, the operators G2i : Lϕ → Lϕi take continuously

Eϕ → Eϕi , and the operators G3i : Lϕ → LNi take continuously Eϕ → ENi .
(N5) There exist positive functions g1i ∈ Lϕ1i

, g2i ∈ Lϕi , g3i ∈ LNi s.t. for s ∈ I, |G ji(y)(s)| ≤ g ji(s)‖y‖ϕ;
and G ji , j = 1, 2, 3, takes the set of all a.e. nondecreasing functions to functions of similar
properties. Moreover, suppose that for any y ∈ Eϕ, we have G1i(y) ∈ Eϕ1i

, G2i(y) ∈ Eϕi , and
G3i(y) ∈ ENi .

(N6) Assume that ki(s) = 1

ε
1

1−αi

∫ sε
1

1−αi

0
Mi(ταi−1) dτ ∈ Eϕ2i

for ε > 0 and s ∈ I.
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(N7) Suppose that ∃ r > 0 and Li > 0 verify

m∏
i=1

Li = K
n∏

i=1

(
‖hi‖ϕi +

∥∥∥g2i

∥∥∥
ϕi
· r +

2k1i‖ki‖ϕ2i

Γ(αi)
‖g1i‖ϕ1i

‖g3i‖Ni · r
2
)
≤ r (3.1)

and
n∏

i=1

(
‖g2i‖ϕi +

2k1i‖ki‖ϕ2i
· r

Γ(αi)
‖g1i‖ϕ1i

‖g3i‖Ni

)
<

1
rnK

.

Theorem 3.1. Let the assumptions (N1)–(N7) be verified, then there exists a solution y ∈ Eϕ of (1.1)
that is a.e. nondecreasing on I.

Proof. I. In what follows, put i = 1, · · · , n. First, Lemma 2.1 implies that each Jαi : LNi → Lϕ2i
is

continuous. By assumption (N4), we have that the operators G1i : Eϕ → Eϕ1i
, G2i : Eϕ → Eϕi , and

G3i : Eϕ → ENi are continuous, then Ai = Jαi
i G3i : Eϕ → Eϕ2i

are continuous. By assumption (N2)
and the Hölder inequality, we get that Ui = G1i · Ai : Eϕ → Eϕi , and they are continuous. By using
assumptions (N3), we have the operators Bi : Eϕ → Eϕi . Finally, assumption (N1) and the Hölder
inequality give us that B =

∏n
i=1 Bi : Eϕ → Eϕ is continuous.

II. We shall establish the ball Br(Eϕ) = {y ∈ Lϕ : ‖y‖ϕ ≤ r}, where r is defined in assumption (N7).
Let y ∈ Br(Eϕ), and by recalling Lemma 2.1, we have

‖Bi(y)‖ϕi ≤ ‖hi‖ϕi + ‖G2i(y)‖ϕi + ‖Uiy‖ϕi

≤ ‖hi‖ϕi +
∥∥∥g2i · ‖y‖ϕ

∥∥∥
ϕi

+ ‖G1i(y) · Ai(y)‖ϕi

≤ ‖hi‖ϕi +
∥∥∥g2i

∥∥∥
ϕi
‖y‖ϕ + k1i‖G1i(y)‖ϕ1i

· ‖Ai(y)‖ϕ2i

≤ ‖hi‖ϕi +
∥∥∥g2i

∥∥∥
ϕi
‖y‖ϕ + k1i

∥∥∥g1i · ‖y‖ϕ
∥∥∥
ϕ1i
· ‖Jαi

i G3i(y)‖ϕ2i

≤ ‖hi‖ϕi +
∥∥∥g2i

∥∥∥
ϕi
‖y‖ϕ + k1i

∥∥∥g1i

∥∥∥
ϕ1i
‖y‖ϕ

2
Γ(αi)

‖ki‖ϕ2i

∥∥∥g3i · ‖y‖ϕ
∥∥∥

Ni

≤ ‖hi‖ϕi +
∥∥∥g2i

∥∥∥
ϕi
‖y‖ϕ + k1i

∥∥∥g1i

∥∥∥
ϕ1i
‖y‖ϕ

2
Γ(αi)

‖ki‖ϕ2i

∥∥∥g3i

∥∥∥
Ni
‖y‖ϕ

≤ ‖hi‖ϕi +
∥∥∥g2i

∥∥∥
ϕi
‖y‖ϕ +

2k1i‖ki‖ϕ2i

Γ(αi)

∥∥∥g1i

∥∥∥
ϕ1i

∥∥∥g3i

∥∥∥
Ni
‖y‖2ϕ

≤ ‖hi‖ϕi +
∥∥∥g2i

∥∥∥
ϕi
· r +

2k1i‖ki‖ϕ2i

Γ(αi)
‖g1i‖ϕ1i

‖g3i‖Ni · r
2.

Therefore, utilizing assumption (N1), we have

‖B(y)‖ϕ ≤ K
n∏

i=1

‖Bi(y)‖ϕi

≤ K
n∏

i=1

(
‖hi‖ϕi +

∥∥∥g2i

∥∥∥
ϕi
· r +

2k1i‖ki‖ϕ2i

Γ(αi)
‖g1i‖ϕ1i

‖g3i‖Ni · r
2
)
≤ r.

By using assumption (N7), we have that B : Br(Eϕ)→ Eϕ is continuous.
III. Let Qr ⊂ Br(Eϕ) contain the a.e. nondecreasing functions of I. The set Qr is a closed, nonempty,

bounded, and convex set in Lϕ; see [23]. Furthermore, Qr is compact in measure (thanks to Lemma 2.3).
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IV. Next, we discuss the monotonicity for the operator B. Take y ∈ Qr, then y is a.e. nondecreasing
on I. By assumption (N5), the operators G ji(y), j = 1, 2, 3 are a.e. nondecreasing on I, by
Proposition, 2.1 the operator Ai is of the same type, then the operators Ui(y) = G1i(y) · Ai(y) are
a.e. nondecreasing on I, and by using assumption (N3), we have that B : Qr → Qr is continuous.

V. We will demonstrate that B is a contraction w.r. to the MNC. Suppose that ∅ , Y ⊂ Qr. For y ∈ Y
and for a set D ⊂ I, ε > 0, measD ≤ ε. By assumption (N4), we have

‖G1i(y) · χD‖ϕ1i
≤ ‖G1i(y · χD)‖ϕ1i

≤
∥∥∥g1i · ‖y · χD‖ϕ

∥∥∥
ϕ1i
≤

∥∥∥g1i

∥∥∥
ϕ1i
‖y · χD‖ϕ

and, similarly,
‖G2i(y) · χD‖ϕi ≤

∥∥∥g2i

∥∥∥
ϕi
‖y · χD‖ϕ,

then we have

‖Bi(y) · χD‖ϕi ≤ ‖hi · χD‖ϕi + ‖G2i(y) · χD‖ϕi + ‖Ui(y) · χD‖ϕi

≤ ‖hi · χD‖ϕi + ‖G2i(y · χD)‖ϕi + ‖G1i(y) · Ai(y) · χD‖ϕi

≤ ‖hi · χD‖ϕi + ‖g2i‖ϕi‖y · χD‖ϕ + k1i‖G1i(y) · χD‖ϕ1i
· ‖Ai(y) · χD‖ϕ2i

≤ ‖hi · χD‖ϕi + ‖g2i‖ϕi‖y · χD‖ϕ + k1i‖G1i(y · χD)‖ϕ1i
· ‖Ai(y)‖ϕ2i

≤ ‖hi · χD‖ϕi + ‖g2i‖ϕi‖y · χD‖ϕ +
2k1i

Γ(αi)
‖g1i‖ϕ1i

‖y · χD‖ϕ‖ki‖ϕ2i
‖G3i(y)‖Ni

≤ ‖hi · χD‖ϕi + ‖g2i‖ϕi‖y · χD‖ϕ +
2k1i

Γ(αi)
‖g1i‖ϕ1i

‖y · χD‖ϕ‖ki‖ϕ2i
‖g3i‖Ni‖y‖ϕ

≤ ‖hi · χD‖ϕi + ‖g2i‖ϕi‖y · χD‖ϕ +
2k1i‖ki‖ϕ2i

· r

Γ(αi)
‖g1i‖ϕ1i

‖g3i‖Ni‖y · χD‖ϕ.

Therefore,

‖B(y) · χD‖ϕ ≤ K
n∏

i=1

‖Bi(y) · χD‖ϕi

≤ K
n∏

i=1

(
‖hi · χD‖ϕi + ‖g2i‖ϕi‖y · χD‖ϕ +

2k1i‖ki‖ϕ2i
· r

Γ(αi)
‖g1i‖ϕ1i

‖g3i‖Ni‖y · χD‖ϕ

)
.

Since hi ∈ Eϕi , we obtain
lim
ε→0
{ sup
meas D≤ε

[sup
y∈Y
{‖hi · χD‖ϕi}]} = 0.

From the definition of c(y), we have

c(B(Y)) ≤ rnK
n∏

i=1

(
‖g2i‖ϕi +

2k1i‖ki‖ϕ2i
· r

Γ(αi)
‖g1i‖ϕ1i

‖g3i‖Ni

)
c(Y),

where ‖y · χD‖
n
ϕ = ‖y · χD‖

n−1
ϕ ‖y · χD‖ϕ ≤ rn‖y · χD‖ϕ.

Since ∅ , Y ⊂ Qr is a bounded and compact in measure subset of Eϕ, we can employ Lemma 2.4
to get

βH(B(Y)) ≤ rnK
n∏

i=1

(
‖g2i‖ϕi +

2k1i‖ki‖ϕ2i
· r

Γ(αi)
‖g1i‖ϕ1i

‖g3i‖Ni

)
· βH(Y).

Since
∏n

i=1

(
‖g2i‖ϕi +

2k1i ‖ki‖ϕ2i
·r

Γ(αi)
‖g1i‖ϕ1i

‖g3i‖Ni

)
< 1

rnK , we have finished (cf. [26]). �
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Remark 3.1. If the N-functions Ni, i = 1, · · · , n verify the ∆′-condition, then Theorem 3.1 is valid on
the unite balls B1(Eϕ) = {y ∈ Lϕ : ‖y‖ϕ ≤ 1}. Furthermore, if they verify the ∆3 or ∆2-conditions, then
Theorem 3.1 is valid on the whole Eϕ (cf. [13, 23]).

3.1.1. Uniqueness of the solution

Now, we discuss the uniqueness of Eq (1.1).

Theorem 3.2. Let assumption (N1)–(N7) be verified. If

C =

n∑
j=1

[
K
(
‖g2 j‖ϕ j +

4k1 j · r‖k j‖ϕ2 j

Γ(α j)
‖g1 j‖ϕi j

∥∥∥g3 j

∥∥∥
N j

)
·

n∏
i=1,i, j

Li

]
< 1,

where r and Li are defined in assumption (N7), then Eq (1.1) has a unique solution y ∈ Lϕ in Qr.

Proof. Let y and z be any two different solutions of Eq (1.1), then we obtain

|y − z| =

∣∣∣∣∣ n∏
i=1

Bi(y) −
n∏

i=1

Bi(z)
∣∣∣∣∣

≤

∣∣∣∣∣ n∏
i=1

Bi(y) − B1(z)
n∏

i=2

Bi(y)
∣∣∣∣∣ +

∣∣∣∣∣B1(z)
n∏

i=2

Bi(y) − B1(z)B2(z)
n∏

i=3

Bi(y)
∣∣∣∣∣

+ · · · +

∣∣∣∣∣Bn(y)
n−1∏
i=1

Bi(z) −
n∏

i=1

Bi(z)
∣∣∣∣∣

≤ |B1(y) − B1(z)| ·
n∏

i=2

|Bi(y)| + |B1(z)| · |B2(y) − B2(z)| ·
n∏

i=3

|Bi(y)|

+ · · · + |Bn(y) − Bn(z)| ·
n−1∏
i=1

|Bi(z)|.

Therefore,

‖y − z‖ϕ ≤ K
∥∥∥B1(y) − B1(z)

∥∥∥
ϕ1

n∏
i=2

‖Bi(y)‖ϕi + K‖B1(z)‖ϕ1

∥∥∥B2(y) − B2(z)
∥∥∥
ϕ2

n∏
i=3

‖Bi(y)‖ϕi

+... + K
∥∥∥Bn(y) − Bn(z)

∥∥∥
ϕn

n−1∏
i=1

‖Bi(z)‖ϕi . (3.2)

To calculate the above inequality, we need the following estimation. For j = 1, · · · , n, and by using
Lemma 2.1, we have∥∥∥B j(y) − B j(z)

∥∥∥
ϕ j
≤

∥∥∥G2 j(y) −G2 j(z)
∥∥∥
ϕ j

+
∥∥∥G1 j(y)A j(y) −G1 j(z)A j(z)

∥∥∥
ϕ j

≤

∥∥∥∥g2 j · ‖y‖ϕ − g2 j · ‖z‖ϕ
∥∥∥∥
ϕ j

+
∥∥∥∥G1 j(y)A j(y) −G1 j(z)A j(y)

∥∥∥∥
ϕ j

+
∥∥∥∥G1 j(z)A j(y) −G1 j(z)A j(z)

∥∥∥∥
ϕ j

≤

∥∥∥∥g2 j ·
∣∣∣‖y‖ϕ − ‖z‖ϕ∣∣∣∥∥∥∥

ϕ j
+ k1 j

∥∥∥G1 j(y) −G1 j(z)
∥∥∥
ϕ1 j

∥∥∥A j(y)
∥∥∥
ϕ2 j

+ k1 j

∥∥∥G1 j(z)
∥∥∥
ϕ1 j

∥∥∥A j(y) − A j(z)
∥∥∥
ϕ2 j
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≤ ‖g2 j‖ϕ j‖y − z‖ϕ + k1 j

∥∥∥∥g1 j ·
∣∣∣‖y‖ϕ − ‖z‖ϕ∣∣∣∥∥∥∥

ϕ1 j

∥∥∥Jα j

j G3 j(y)
∥∥∥
ϕ2 j

+k1 j

∥∥∥g1 j · ‖z‖ϕ
∥∥∥
ϕ1 j

∥∥∥Jα j

j G3 j(y) − Jα j

j G3 j(z)
∥∥∥
ϕ2 j

≤ ‖g2 j‖ϕ j‖y − z‖ϕ + k1 j‖g1 j‖ϕ1 j
‖y − z‖ϕ

2
Γ(αi)

‖k j‖ϕ2 j

∥∥∥g3 j

∥∥∥
N j
‖y‖ϕ

+k1 j‖g1 j‖ϕ1 j
· ‖z‖ϕ

2
Γ(α j)

‖k j‖ϕ2 j

∥∥∥g3 j

∥∥∥
N j
‖y − z‖ϕ

≤

(
‖g2 j‖ϕ j +

4k1 j · r‖k j‖ϕ2 j

Γ(α j)
‖g1 j‖ϕ1 j

∥∥∥g3 j

∥∥∥
N j

)
‖y − z‖ϕ. (3.3)

By substituting from (3.1) and (3.3) in (3.2), we obtain

‖y − z‖ϕ ≤
[
K
(
‖g21‖ϕ1 +

4k11 · r‖k1‖ϕ21

Γ(α1)
‖g11‖ϕ11

∥∥∥g31

∥∥∥
N1

) n∏
i=2

Li

+KL1

(
‖g22‖ϕ2 +

4k12 · r‖k2‖ϕ22

Γ(α2)
‖g12‖ϕ12

∥∥∥g32

∥∥∥
N2

) n∏
i=3

Li

+... + K
(
‖g2n‖ϕn +

4k1n · r‖kn‖ϕ2n

Γ(αn)
‖g1n‖ϕ1n

∥∥∥g3n

∥∥∥
Nn

) n−1∏
i=1

Li

]
‖y − z‖ϕ

= C · ‖y − z‖ϕ.

Since C < 1, we get y = z (a.e.), and we have finished. �

4. Examples

We need to provide some examples to demonstrate our results.

Example 4.1. Put the N-functions Mi(u) = Ni(u) = u2 and ϕ2i(u) = exp |u| − |u| − 1. We shall show that
Jαi

i : LNi → Lϕ2i
, i = 1, · · · , n are continuous, and Lemma 2.1 is verified.

Indeed: For s ∈ [1, e] and any αi ∈ (0, 1), we have

ki(s) =

∫ s

0
Mi

(
ταi−1) dτ =

∫ s

0
τ2αi−2 dτ =

s2αi−1

2αi − 1
.

Moreover, ∫ e

1
ϕ2i

(
ki(s)

)
dτ =

∫ e

1

(
e

s2αi−1
2αi−1 −

s2αi−1

2αi − 1
− 1

)
ds < ∞.

Thus for y ∈ LNi , we get that Jαi
i : LNi → Lϕ2i

is continuous.

Remark 4.1. For more details and information about the acting and continuity assumptions of Gi(y) =

gi(s) · y(s), (see our assumption (N5) and [15, Theorem 18.2]).

Example 4.2. Let G ji(y)(s) = gi(s) · y(s), j = 1, 2, 3, and i = 1, · · · n, then we have

y(s) =

n∏
i=1

(
hi(s) + g2i(s) · y(s) + g1i(s) · y(s)

∫ s

1

(
log

s
τ

)αi−1 g3i(τ) · y(τ)
τ

dτ
)
, αi ∈ (0, 1), s ∈ [1, e],

which provides a special case of Eq (1.1).
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5. Conclusions

The current study demonstrates and studies two existence theorems, namely, (the existence and
the uniqueness) the monotonic solutions for a general and abstract form of a product of n-quadratic
Hadamard-type fractional integral equations in Orlicz spaces Lϕ. The measure of non-compactness
associated with Darbo’s fixed-point theorem and fractional calculus are the main tools used to obtain
our results in Lϕ-spaces. For the upcoming work in this direction, we will look for some numerical
solutions for similar problems in different function spaces.
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