Mathematics

Research article

Solvability of product of n-quadratic Hadamard-type fractional integral equations in Orlicz spaces

Saud Fahad Aldosary ${ }^{1, *}$ and Mohamed M. A. Metwali ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
${ }^{2}$ Department of Mathematics and Computer Science, Faculty of Science, Damanhour University, Damanhour, Egypt

* Correspondence: Email: Sau.aldosary@ psau.edu.sa.

Abstract

The current study demonstrated and studied the existence of monotonic solutions, as well as the uniqueness of the solutions for a general and abstract form of a product of n-quadratic fractional integral equations of Hadamard-type in Orlicz spaces L_{φ}. We utilized the analysis of the measure of non-compactness associated with Darbo's fixed-point theorem and fractional calculus to obtain the results.

Keywords: Hadamard fractional integral operator; n-product of quadratic integral equation; measure of non-compactness (MNC); Orlicz spaces L_{φ}
Mathematics Subject Classification: 45G10, 46E30, 47H30, 47N20

1. Introduction

The theory of fractional integral and differential equations has a fundamental role in several branches of science, such as economics, biology, engineering, physics, electrical circuits, electrochemistry, earthquakes, fluid dynamics, traffic models, and viscoelasticity (cf. [1-3]).

Hadamard fractional integral operators were defined by Hadamard in 1892 [4]. These operators have a kernel of logarithmic function of arbitrary order, which is not of convolution type. Consequently, they should be examined separately from the more well-known Caputo and Riemann-Liouville fractional operators. These types of operators have been studied by several researchers in numerous function spaces. (cf. [5-7]).

The present work investigates and establishes the existence theorem as well as the uniqueness of the solution to a general and abstract form of a product of n-quadratic fractional integral equations of

Hadamard-type in Orlicz spaces L_{φ}, which has the form

$$
\begin{equation*}
y(s)=\prod_{i=1}^{n}\left(h_{i}(s)+G_{2_{i}}(y)(s)+\frac{G_{1_{i}}(y)(s)}{\Gamma\left(\alpha_{i}\right)} \cdot \int_{1}^{s}\left(\log \frac{s}{\tau}\right)^{\alpha_{i}-1} \frac{G_{3_{i}}(y)(\tau)}{\tau} d \tau\right), s \in[1, e], 0<\alpha_{i}<1, \tag{1.1}
\end{equation*}
$$

in arbitrary Orlicz spaces L_{φ}, where $G_{j_{i}}, j=1,2,3$ are general operators.
The theory of fractional calculus in Orlicz spaces was studied by O'Neill in 1965 [8], and, subsequently, several interesting articles were published on this topic (see, for example, [9-11]).

Orlicz spaces L_{φ} are suitable spaces for studying operators with strong nonlinearities (e.g., exponential growth) rather than polynomial growth in Lebesgue spaces $L_{p}, p \geq 1$, (see [12, 13]). These are motivated by some problems in statistical physics and mathematical physics (see [14, 15]). In particular, the thermodynamics problem

$$
y(s)+\int_{I} a(s, u) \cdot e^{y(u)} d u=0
$$

contains exponential nonlinearity (cf. [16]).
Moreover, quadratic integral equations have been applied in astrophysics, radiative transfer theory, or neutron transport [17-19]. It should be noted that several kinds of quadratic integral equations have been investigated in L_{p} spaces [20-22] and in L_{φ}-spaces [12,13,23] using the measure of noncompactness analysis associated with Darbo's fixed-point hypothesis via different sets of assumptions.

It is useful to study the product of two or more than two operators, as mentioned by Medved and Brestovanská in [24,25]; however, they consider the Banach algebras of continuous functions, which have a different technique in the proof. Since Orlicz spaces are not Banach algebras, we use the methods given in $[26,27]$ to obtain our results.

In [26], the author proved some fixed point theorems and employed them in examining the solution of the equation

$$
y(s)=\prod_{i=1}^{n}\left(g_{i}(s)+\int_{a}^{s} K_{i}(s, \tau, y(\tau)) d \tau\right),
$$

in some types of ideal spaces like $L_{p}, p>1$ and Orlicz spaces $L_{\varphi}(I), I=[a, b]$, where φ verifies the Δ_{2}-condition.

In [27], the existence theorems for the product of n-integral equations operating on n-distinct Orlicz spaces

$$
y(s)=\prod_{i=1}^{n}\left(g_{i}(s)+\lambda_{i} \cdot h_{i}(s, y(s)) \cdot \int_{a}^{b} K_{i}(s, \tau) f_{i}(\tau, y(\tau)) d \tau\right),
$$

were discussed in Orlicz spaces $L_{\varphi}([a, b])$, for $n \geq 2$, when the function φ verifies the so-called $\Delta^{\prime}, \Delta_{3}$, and Δ_{2}-conditions.

The author in [28] demonstrated and proved some basic theorems for the Riemann-Liouville fractional integral operator and investigated the existence theorems in L_{φ}-spaces for the equation

$$
y(s)=y(s)+G(y)(s) \int_{0}^{s} \frac{(s-\tau)^{\alpha-1}}{\Gamma(\alpha)} f(\tau, y(\tau)) d \tau, \quad 0<\alpha<1, s \in[0, d] .
$$

In [29], some basic theorems were demonstrated and proved for the Hadamard fractional order integral operator, and the existence theorems were also investigated for the equation:

$$
y(s)=G_{3}(y)(s)+\frac{G_{1}(y)(s)}{\Gamma(\alpha)} \int_{1}^{s}\left(\log \frac{s}{\tau}\right)^{\alpha-1} \frac{G_{2}(y)(\tau)}{\tau} d \tau, \quad 0<\alpha<1, s \in[1, e],
$$

in Orlicz spaces L_{φ}.
Basic theorems for the Erdélyi-Kober fractional order integral operator can be found, both demonstrated and proved, in [30], where the existence theorems were also investigated for the following equation:

$$
y(s)=g(s)+f_{1}(s, y(s))+f_{2}\left(s, \frac{\beta h_{1}(s, y(s))}{\Gamma(\alpha)} \cdot \int_{0}^{s} \frac{\tau^{\beta-1} h_{2}(\tau, y(\tau))}{\left(s^{\beta}-\tau^{\beta}\right)^{1-\alpha}} d \tau\right), s \in[0, d],
$$

where $0<\alpha<1$ and $\beta>0$ in both L_{p} and L_{φ} spaces.
This paper is motivated by studying monotonic solutions for a general and abstract form of a product of n-quadratic fractional integral equations of Hadamard-type in Orlicz spaces L_{φ}. We provide two existence theorems, namely (the existence and the uniqueness of) the solutions for Eq (1.1). The measure of non-compactness and Darbo's fixed point theorem are our main tools for examining the obtained results.

2. Preliminaries

Let $\mathbb{R}^{+}=[0, \infty) \subset \mathbb{R}=(-\infty, \infty)$ and $I=[1, e], e \approx 2.718$. A function $M:[0, \infty) \rightarrow[0, \infty)$ points to a Young function if

$$
M(\tau)=\int_{0}^{\tau} u(s) d t, \text { for } \tau \geq 0
$$

where $u:[0, \infty) \rightarrow[0, \infty)$ is a left-continuous-increasing function and is neither equal to infinite, nor zero on \mathbb{R}^{+}. The functions N and M are referred to the complementary Young functions, if $M(y)=$ $\sup _{z \geq 0}(y z-N(y))$. Furthermore, if M is finite-valued with $\lim _{\tau \rightarrow 0} \frac{M(\tau)}{\tau}=0, \lim _{\tau \rightarrow \infty} \frac{M(\tau)}{\tau}=\infty$, and $M(\tau)>0$ if $\tau>0(M(\tau)=0 \Longleftrightarrow \tau=0)$, then M is said to be an N-function.

The Orlicz space $L_{M}=L_{M}(I)$ is the space of all measurable functions $y: I \rightarrow \mathbb{R}$ with the Luxemburg norm

$$
\|y\|_{M}=\inf _{\epsilon>0}\left\{\int_{I} M\left(\frac{y(\tau)}{\epsilon}\right) d \tau \leq 1\right\} .
$$

Let $E_{M}=E_{M}(I)$ contain the set of all bounded functions of L_{M} and have absolutely continuous norms.
Definition 2.1. [31] The Hadamard-type fractional integral of an integrable function y of order $\alpha>0$ is given by

$$
J^{\alpha} y(s)=\frac{1}{\Gamma(\alpha)} \int_{1}^{s}\left(\log \frac{s}{\tau}\right)^{\alpha-1} \frac{y(\tau)}{\tau} d \tau, \quad s>1, \alpha>0
$$

where $\Gamma(\alpha)=\int_{0}^{\infty} e^{-s} s^{\alpha-1} d s$.
Proposition 2.1. [5] The operator J^{α} maps a.e. nondecreasing and nonnegative functions to functions of similar types.

Lemma 2.1. [29] Assume, that M and N are complementary N-functions with $\int_{0}^{s} M\left(\tau^{\alpha-1}\right) d \tau<$ $\infty, \alpha \in(0,1)$. Moreover, suppose that φ is N-function, where

$$
k(s)=\frac{1}{\epsilon^{\frac{1}{1-\alpha}}} \int_{0}^{s \epsilon \frac{1}{1-\alpha}} M\left(\tau^{\alpha-1}\right) d \tau \in E_{\varphi}
$$

for a.e. $\tau \in I$ and $\epsilon>0$, then the operator $J^{\alpha}: L_{N} \rightarrow L_{\varphi}$ is continuous and verifying

$$
\left\|J^{\alpha} y\right\|_{\varphi} \leq \frac{2}{\Gamma(\alpha)}\|k\|_{\varphi}\|y\|_{N} .
$$

The following lemma characterizes the product of the operators in L_{φ} :
Lemma 2.2. ([32, Theorem 1]) Let $n \geq 2$. If φ and $\varphi_{i}, i=1, \cdots n$ are arbitrary N-functions, then the following conditions are equivalent:
(1) For every $u_{i} \in L_{\varphi_{i}}, \prod_{i=1}^{n} u_{i} \in L_{\varphi}$.
(2) There exists a constant $K>0$ s.t.

$$
\left\|\prod_{i=1}^{n} u_{i}\right\|_{\varphi} \leq K \prod_{i=1}^{n}\left\|u_{i}\right\|_{\varphi_{i}},
$$

for every $u_{i} \in L_{\varphi_{i}}, i=1,2, \cdots n$.
(3) There exists a constant $C>0$ s.t.

$$
\prod_{i=1}^{n} \varphi_{i}^{-1}(s) \leq C \varphi^{-1}(s)
$$

for every $s \geq 0$.
(4) There exists a constant $C>0$ s.t. $\forall s_{i} \geq 0, i=1, \cdots n$,

$$
\varphi\left(\frac{\prod_{i=1}^{n} s_{i}}{C}\right) \leq \sum_{i=1}^{n} \varphi_{i}\left(s_{i}\right) .
$$

Let $S=S(I)$ refer to all Lebesgue measurable functions on the interval I. The set S concerning the metric

$$
d(y, z)=\inf _{\epsilon>0}[\epsilon+\operatorname{meas}\{\tau:|y(\tau)-z(\tau)| \geq \epsilon\}]
$$

becomes a complete space, where "meas" points to the Lebesgue measure in \mathbb{R}. The convergence w.r. to d is identical to the convergence in measure on I (cf. Proposition 2.14 in [34]). We call the compactness in S by "compactness in measure".
Lemma 2.3. [23] Let $Y \subset L_{M}$ be a bounded set, and there is a family $\left(\Omega_{c}\right)_{0 \leq c \leq e-1} \subset I$ s.t. meas $\Omega_{c}=c$ for every $c \in[1, e]$, and for every $y \in Y$,

$$
y\left(s_{1}\right) \geq y\left(s_{2}\right), \quad\left(s_{1} \in \Omega_{c}, s_{2} \notin \Omega_{c}\right) .
$$

Thus, Y represents a compact in measure set in L_{M}.

Definition 2.2. [23] Let $\emptyset \neq Y \subset L_{M}$ be bounded, then

$$
\beta_{H}(Y)=\inf \left\{r>0: \exists \text { a finite subset } Z \text { of } L_{M} \text { s.t. } Y \subset Z+B_{r}\right\},
$$

is called the Hausdorff measure of non-compactness (MNC), where $B_{r}=\left\{m \in L_{M}:\|m\|_{M} \leq r\right\}$.
The measure of equi-integrability c of the set $Y \in L_{M}$ is given by

$$
c(Y)=\lim _{\epsilon \rightarrow 0} \sup _{\text {mes } D \leq \epsilon} \sup _{y \in Y}\left\|y \cdot \chi_{D}\right\|_{L_{M}},
$$

where $\epsilon>0$ and χ_{D} is the characteristic function of $D \subset I$ (cf. [33] or [34]).
Lemma 2.4. [23,33] Let $\emptyset \neq Y \subset E_{M}$ provide a bounded and compact in measure set, then we have

$$
\beta_{H}(Y)=c(Y) .
$$

3. Main results

Rewrite Eq (1.1) as

$$
y=B(y)=\prod_{i=1}^{n} B_{i}(y)=\prod_{i=1}^{n}\left(h_{i}+G_{2_{i}}(y)+U_{i}(y)\right),
$$

where

$$
U_{i}(y)=G_{1_{i}}(y) \cdot A_{i}(y), \quad A_{i}(y)=J_{i}^{\alpha_{i}} G_{3_{i}}(y),
$$

s.t. $J_{i}^{\alpha_{i}}$ is as in Definition 2.1 and $G_{j_{i}}(y)$ are general operators that act on some different Orlicz spaces for $j=1,2,3$ and $i=1, \cdots, n$.

Next, we discuss the existence of L_{φ} solutions for Eq (1.1).

3.1. The existence of L_{φ}-solutions

For $i=1, \cdots, n$, suppose that $\varphi, \varphi_{i}, \varphi_{1}, \varphi_{2_{i}}$ are N-functions and that N_{i}, M_{i} are complementary N-functions with $\int_{0}^{s} M_{i}\left(\tau^{\alpha_{i}-1}\right) d \tau<\infty, \alpha_{i} \in(0,1)$, and consider the assumptions:
(N1) There exists a constant $K>0$ s.t. for every $u_{i} \in L_{\varphi_{i}}$, and we have $\left\|\prod_{i=1}^{n} u_{i}\right\|_{\varphi} \leq K \prod_{i=1}^{n}\left\|u_{i}\right\|_{\varphi_{i}}$.
(N2) There exists a constant $k_{1_{i}}>0$ such that for every $u_{1} \in L_{\varphi_{1}}$ and $u_{2} \in L_{\varphi_{2}}$, we get $\left\|u_{1} u_{2}\right\|_{\varphi_{i}} \leq$ $k_{1_{i}}\left\|u_{1}\right\|_{\varphi_{1}}\left\|u_{2}\right\|_{\varphi_{2}}$.
(N3) The functions $h_{i} \in E_{\varphi_{i}}$ are a.e. nondecreasing on the interval I.
(N4) $G_{1_{i}}: L_{\varphi} \rightarrow L_{\varphi_{1}}$ take continuously $E_{\varphi} \rightarrow E_{\varphi_{1}}$, the operators $G_{2_{i}}: L_{\varphi} \rightarrow L_{\varphi_{i}}$ take continuously $E_{\varphi} \rightarrow E_{\varphi_{i}}$, and the operators $G_{3_{i}}: L_{\varphi} \rightarrow L_{N_{i}}$ take continuously $E_{\varphi} \rightarrow E_{N_{i}}$.
(N5) There exist positive functions $g_{1_{i}} \in L_{\varphi_{1}}, g_{2_{i}} \in L_{\varphi_{i}}, g_{3_{i}} \in L_{N_{i}}$ s.t. for $s \in I,\left|G_{j_{i}}(y)(s)\right| \leq g_{j_{i}}(s)\|y\|_{\varphi}$; and $G_{j_{i}}, j=1,2,3$, takes the set of all a.e. nondecreasing functions to functions of similar properties. Moreover, suppose that for any $y \in E_{\varphi}$, we have $G_{1_{i}}(y) \in E_{\varphi_{1}}, G_{2_{i}}(y) \in E_{\varphi_{i}}$, and $G_{3_{i}}(y) \in E_{N_{i}}$.
(N6) Assume that $k_{i}(s)=\frac{1}{\epsilon^{1-\alpha_{i}}} \int_{0}^{s \epsilon^{\frac{1}{1-\alpha_{i}}}} M_{i}\left(\tau^{\alpha_{i}-1}\right) d \tau \in E_{\varphi_{2_{i}}}$ for $\epsilon>0$ and $s \in I$.
(N7) Suppose that $\exists r>0$ and $L_{i}>0$ verify

$$
\begin{equation*}
\prod_{i=1}^{m} L_{i}=K \prod_{i=1}^{n}\left(\left\|h_{i}\right\|_{\varphi_{i}}+\left\|g_{2_{i}}\right\|_{\varphi_{i}} \cdot r+\frac{2 k_{1_{i}}\left\|k_{i}\right\|_{\varphi_{2}}}{\Gamma\left(\alpha_{i}\right)}\left\|g_{1_{i}}\right\|_{\varphi_{1}}\left\|g_{3_{i}}\right\|_{N_{i}} \cdot r^{2}\right) \leq r \tag{3.1}
\end{equation*}
$$

and

$$
\prod_{i=1}^{n}\left(\left\|g_{2_{i}}\right\|\left\|_{\varphi_{i}}+\frac{2 k_{1_{i}}\left\|k_{i}\right\|_{\varphi_{2_{i}}} \cdot r}{\Gamma\left(\alpha_{i}\right)}\right\| g_{1_{i}}\left\|_{\varphi_{i}}\right\| g_{3_{i}} \|_{N_{i}}\right)<\frac{1}{r^{n} K} .
$$

Theorem 3.1. Let the assumptions (N1)-(N7) be verified, then there exists a solution $y \in E_{\varphi}$ of (1.1) that is a.e. nondecreasing on I.

Proof. I. In what follows, put $i=1, \cdots, n$. First, Lemma 2.1 implies that each $J_{i}^{\alpha}: L_{N_{i}} \rightarrow L_{\varphi_{2_{i}}}$ is continuous. By assumption (N4), we have that the operators $G_{1_{i}}: E_{\varphi} \rightarrow E_{\varphi_{1}}, G_{2_{i}}: E_{\varphi} \rightarrow E_{\varphi_{i}}$, and $G_{3_{i}}: E_{\varphi} \rightarrow E_{N_{i}}$ are continuous, then $A_{i}=J_{i}^{\alpha_{i}} G_{3_{i}}: E_{\varphi} \rightarrow E_{\varphi_{2}}$ are continuous. By assumption (N2) and the Hölder inequality, we get that $U_{i}=G_{1_{i}} \cdot A_{i}: E_{\varphi} \rightarrow E_{\varphi_{i}}$, and they are continuous. By using assumptions (N3), we have the operators $B_{i}: E_{\varphi} \rightarrow E_{\varphi_{i}}$. Finally, assumption (N1) and the Hölder inequality give us that $B=\prod_{i=1}^{n} B_{i}: E_{\varphi} \rightarrow E_{\varphi}$ is continuous.
II. We shall establish the ball $B_{r}\left(E_{\varphi}\right)=\left\{y \in L_{\varphi}:\|y\|_{\varphi} \leq r\right\}$, where r is defined in assumption (N7).

Let $y \in B_{r}\left(E_{\varphi}\right)$, and by recalling Lemma 2.1, we have

$$
\begin{aligned}
\left\|B_{i}(y)\right\|_{\varphi_{i}} & \leq\left\|h_{i}\right\|_{\varphi_{i}}+\left\|G_{2_{i}}(y)\right\|_{\varphi_{i}}+\left\|U_{i} y\right\|_{\varphi_{i}} \\
& \leq\left\|h_{i}\right\|_{\varphi_{i}}+\left\|g_{2_{i}} \cdot\right\| y\left\|_{\varphi}\right\|_{\varphi_{i}}+\left\|G_{1_{i}}(y) \cdot A_{i}(y)\right\|_{\varphi_{i}} \\
& \leq\left\|h_{i}\right\|_{\varphi_{i}}+\left\|g_{2_{i}}\right\|_{\varphi_{i}}\|y\|_{\varphi}+k_{1_{i} i}\left\|G_{1_{i}}(y)\right\|_{\varphi_{1}} \cdot\left\|A_{i}(y)\right\|_{\varphi_{2_{i}}} \\
& \leq\left\|h_{i}\right\|_{\varphi_{i}}+\left\|g_{2_{i} i}\right\|_{\varphi_{i}}\|y\|_{\varphi}+k_{1_{i}}\left\|g_{1_{i}} \cdot\right\| y\left\|_{\varphi}\right\|_{\varphi_{1_{i}}} \cdot\left\|J_{i}^{\alpha_{i}} G_{3_{i}}(y)\right\|_{\varphi_{2_{i}}} \\
& \leq\left\|h_{i}\right\|_{\varphi_{i}}+\left\|g_{2_{i} i}\right\|_{\varphi_{i}}\|y\|_{\varphi}+k_{1_{i}}\left\|g_{1_{i} i}\right\|_{\varphi_{1}}\|y\|_{\varphi} \frac{2}{\Gamma\left(\alpha_{i}\right)}\left\|k_{i}\right\|_{\varphi_{2_{i}}}\left\|g_{3_{i}} \cdot\right\| y\left\|_{\varphi}\right\|_{N_{i}} \\
& \leq\left\|h_{i}\right\|_{\varphi_{i}}+\left\|g_{2_{i}}\right\|_{\varphi_{i}}\|y\|_{\varphi}+k_{1_{i}}\left\|g_{1_{i}}\right\|_{\varphi_{1_{i}}}\|y\|_{\varphi} \frac{2}{\Gamma\left(\alpha_{i}\right)}\left\|k_{i}\right\|_{\varphi_{2}}\left\|g_{3_{i}}\right\|_{N_{i}}\|y\|_{\varphi} \\
& \leq\left\|h_{i}\right\|_{\varphi_{i}}+\left\|g_{2_{i}}\right\|_{\varphi_{i}}\|y\|_{\varphi}+\frac{2 k_{1_{i}}\left\|k_{i}\right\|_{\varphi_{2}}}{\Gamma\left(\alpha_{i}\right)}\left\|g_{1_{i}}\right\|_{\varphi_{1 i}}\left\|g_{3_{i}}\right\|_{N_{i}}\|y\|_{\varphi}^{2} \\
& \leq\left\|h_{i}\right\|_{\varphi_{i}}+\left\|g_{2_{i}}\right\|_{\varphi_{i}} \cdot r+\frac{2 k_{1_{i}}\left\|k_{i}\right\|_{\varphi_{i}}}{\Gamma\left(\alpha_{i}\right)}\left\|g_{1_{i}}\right\|_{\varphi_{i}}\left\|g_{3_{i}}\right\|_{N_{i}} \cdot r^{2} .
\end{aligned}
$$

Therefore, utilizing assumption (N1), we have

$$
\begin{aligned}
\|B(y)\|_{\varphi} & \leq K \prod_{i=1}^{n}\left\|B_{i}(y)\right\|_{\varphi_{i}} \\
& \leq K \prod_{i=1}^{n}\left(\left\|h_{i}\right\|_{\varphi_{i}}+\left\|g_{2_{i}}\right\|_{\varphi_{i}} \cdot r+\frac{2 k_{1_{i}}\left\|k_{i}\right\| \|_{\varphi_{i}}}{\Gamma\left(\alpha_{i}\right)}\left\|g_{1_{i}}\right\|_{\varphi_{1}}\left\|g_{3_{i}}\right\|_{N_{i}} \cdot r^{2}\right) \leq r .
\end{aligned}
$$

By using assumption (N7), we have that $B: B_{r}\left(E_{\varphi}\right) \rightarrow E_{\varphi}$ is continuous.
III. Let $Q_{r} \subset B_{r}\left(E_{\varphi}\right)$ contain the a.e. nondecreasing functions of I. The set Q_{r} is a closed, nonempty, bounded, and convex set in L_{φ}; see [23]. Furthermore, Q_{r} is compact in measure (thanks to Lemma 2.3).
IV. Next, we discuss the monotonicity for the operator B. Take $y \in Q_{r}$, then y is a.e. nondecreasing on I. By assumption (N5), the operators $G_{j_{i}}(y), j=1,2,3$ are a.e. nondecreasing on I, by Proposition, 2.1 the operator A_{i} is of the same type, then the operators $U_{i}(y)=G_{1_{i}}(y) \cdot A_{i}(y)$ are a.e. nondecreasing on I, and by using assumption (N3), we have that $B: Q_{r} \rightarrow Q_{r}$ is continuous.
V. We will demonstrate that B is a contraction w.r. to the MNC. Suppose that $\emptyset \neq Y \subset Q_{r}$. For $y \in Y$ and for a set $D \subset I, \epsilon>0$, meas $D \leq \epsilon$. By assumption (N4), we have

$$
\left\|G_{1_{i}}(y) \cdot \chi_{D}\right\|_{\varphi_{1_{i}}} \leq\left\|G_{1_{i}}\left(y \cdot \chi_{D}\right)\right\|_{\varphi_{1}} \leq\left\|g_{1_{i}} \cdot\right\| y \cdot \chi_{D}\left\|_{\varphi}\right\|_{\varphi_{1_{i}}} \leq\left\|g_{1_{i}}\right\|_{\varphi_{1_{i}}}\left\|y \cdot \chi_{D}\right\|_{\varphi}
$$

and, similarly,

$$
\left\|G_{2_{i}}(y) \cdot \chi_{D}\right\|_{\varphi_{i}} \leq\left\|g_{2_{i}}\right\|_{\varphi_{i}}\left\|y \cdot \chi_{D}\right\|_{\varphi}
$$

then we have

$$
\begin{aligned}
\left\|B_{i}(y) \cdot \chi_{D}\right\|_{\varphi_{i}} & \leq\left\|h_{i} \cdot \chi_{D}\right\|_{\varphi_{i}}+\left\|G_{2_{i}}(y) \cdot \chi_{D}\right\|_{\varphi_{i}}+\left\|U_{i}(y) \cdot \chi_{D}\right\|_{\varphi_{i}} \\
& \leq\left\|h_{i} \cdot \chi_{D}\right\|_{\varphi_{i}}+\left\|G_{2_{i}}\left(y \cdot \chi_{D}\right)\right\|_{\varphi_{i}}+\left\|G_{1_{i}}(y) \cdot A_{i}(y) \cdot \chi_{D}\right\|_{\varphi_{i}} \\
& \leq\left\|h_{i} \cdot \chi_{D}\right\|_{\varphi_{i}}+\left\|g_{2_{i}}\right\|\left\|_{\varphi_{i}}\right\| y \cdot \chi_{D}\left\|_{\varphi}+k_{1_{i}}\right\| G_{1_{i}}(y) \cdot \chi_{D}\left\|_{\varphi_{1}} \cdot\right\| A_{i}(y) \cdot \chi_{D} \|_{\varphi_{2_{i}}} \\
& \leq\left\|h_{i} \cdot \chi_{D}\right\|_{\varphi_{i}}+\left\|g_{2_{i}}\right\|\left\|_{\varphi_{i}}\right\| y \cdot \chi_{D}\left\|_{\varphi}+k_{1_{i}}\right\| G_{1_{i}}\left(y \cdot \chi_{D}\right)\left\|_{\varphi_{1_{i}}} \cdot\right\| A_{i}(y) \|_{\varphi_{2_{i}}} \\
& \leq\left\|h_{i} \cdot \chi_{D}\right\|_{\varphi_{i}}+\left\|g_{2_{i}}\right\|\left\|_{\varphi_{i}}\right\| y \cdot \chi_{D}\left\|_{\varphi}+\frac{2 k_{1_{i}}}{\Gamma\left(\alpha_{i}\right)}\right\| g_{1_{i}}\left\|_{\varphi_{1}}\right\| y \cdot \chi_{D}\| \|_{\varphi}\left\|k_{i}\right\|_{\varphi_{2_{i}}}\left\|G_{3_{i}}(y)\right\|_{N_{i}} \\
& \leq\left\|h_{i} \cdot \chi_{D}\right\|_{\varphi_{i}}+\left\|g_{2_{i}}\right\|\left\|_{\varphi_{i}}\right\| y \cdot \chi_{D}\left\|_{\varphi}+\frac{2 k_{1_{i}}}{\Gamma\left(\alpha_{i}\right)}\right\| g_{1_{i}}\left\|_{\varphi_{i}}\right\| y \cdot \chi_{D}\left\|_{\varphi}\right\| k_{i}\left\|_{\varphi_{2}}\right\| g_{3_{i}}\left\|_{N_{i}}\right\| y \|_{\varphi} \\
& \leq\left\|h_{i} \cdot \chi_{D}\right\|_{\varphi_{i}}+\left\|g_{2_{i}}\right\|\left\|_{\varphi_{i}}\right\| y \cdot \chi_{D}\left\|_{\varphi}+\frac{2 k_{1_{i}}\left\|k_{i}\right\|_{\varphi_{2_{i}}} r}{\Gamma\left(\alpha_{i}\right)}\right\| g_{1_{i}}\| \|_{\varphi_{i}}\left\|g_{3_{i}}\right\|\left\|_{N_{i}}\right\| y \cdot \chi_{D} \|_{\varphi} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\|B(y) \cdot \chi_{D}\right\|_{\varphi} & \leq K \prod_{i=1}^{n}\left\|B_{i}(y) \cdot \chi_{D}\right\|_{\varphi_{i}} \\
& \leq K \prod_{i=1}^{n}\left(\left\|h_{i} \cdot \chi_{D}\right\|_{\varphi_{i}}+\left\|g_{2_{i}}\right\|_{\varphi_{i}}\left\|y \cdot \chi_{D}\right\|_{\varphi}+\frac{2 k_{1_{i}}\left\|k_{i}\right\|_{\varphi_{2}} \cdot r}{\Gamma\left(\alpha_{i}\right)}\left\|g_{1_{i}}\right\| \varphi_{\varphi_{i}}\left\|g_{3_{i}}\right\|_{N_{i}}\left\|y \cdot \chi_{D}\right\|_{\varphi}\right) .
\end{aligned}
$$

Since $h_{i} \in E_{\varphi_{i}}$, we obtain

$$
\lim _{\varepsilon \rightarrow 0}\left\{\sup _{\text {meas }}\left[\sup _{D \leq \varepsilon}\left\{\left\|h_{i \in Y} \cdot \chi_{D}\right\|_{\varphi_{i}}\right\}\right]\right\}=0 .
$$

From the definition of $c(y)$, we have

$$
c(B(Y)) \leq r^{n} K \prod_{i=1}^{n}\left(\left\|g_{2_{i}}\right\|_{\varphi_{i}}+\frac{2 k_{1_{i}}\left\|k_{i}\right\|_{\varphi_{2_{i}}} \cdot r}{\Gamma\left(\alpha_{i}\right)}\left\|g_{1_{i} i}\right\|_{\varphi_{1}}\left\|g_{3_{i} i}\right\|_{N_{i}}\right) c(Y),
$$

where $\left\|y \cdot \chi_{D}\right\|_{\varphi}^{n}=\left\|y \cdot \chi_{D}\right\|_{\varphi}^{n-1}\left\|y \cdot \chi_{D}\right\|_{\varphi} \leq r^{n}\left\|y \cdot \chi_{D}\right\|_{\varphi}$.
Since $\emptyset \neq Y \subset Q_{r}$ is a bounded and compact in measure subset of E_{φ}, we can employ Lemma 2.4 to get

$$
\beta_{H}(B(Y)) \leq r^{n} K \prod_{i=1}^{n}\left(\left\|g_{2_{i}}\right\|_{\varphi_{i}}+\frac{2 k_{1_{i}}\left\|k_{i}\right\|_{\varphi_{2_{i}}} \cdot r}{\Gamma\left(\alpha_{i}\right)}\left\|g_{1_{i}}\right\|_{\varphi_{i}}\left\|g_{3_{i}}\right\|_{N_{i}}\right) \cdot \beta_{H}(Y) .
$$

Since $\prod_{i=1}^{n}\left(\left\|g_{2_{i}}\right\|_{\varphi_{i}}+\frac{2 k_{1_{i}}\left\|k_{i l}\right\|_{\varphi_{i}} \cdot r}{\Gamma\left(\alpha_{i}\right)}\left\|g_{1_{i}}\right\|\left\|_{\varphi_{i}}\right\| g_{3_{i}} \|_{N_{i}}\right)<\frac{1}{r^{2} K}$, we have finished (cf. [26]).

Remark 3.1. If the N-functions $N_{i}, i=1, \cdots, n$ verify the Δ^{\prime}-condition, then Theorem 3.1 is valid on the unite balls $B_{1}\left(E_{\varphi}\right)=\left\{y \in L_{\varphi}:\|y\|_{\varphi} \leq 1\right\}$. Furthermore, if they verify the Δ_{3} or Δ_{2}-conditions, then Theorem 3.1 is valid on the whole $E_{\varphi}(c f .[13,23])$.

3.1.1. Uniqueness of the solution

Now, we discuss the uniqueness of Eq (1.1).
Theorem 3.2. Let assumption (N1)-(N7) be verified. If

$$
C=\sum_{j=1}^{n}\left[K\left(\left\|g_{2_{j}}\right\|_{\varphi_{j}}+\frac{4 k_{1_{j}} \cdot r\left\|k_{j}\right\|_{\varphi_{2}}}{\Gamma\left(\alpha_{j}\right)}\left\|g_{1_{j}}\right\|\left\|_{\varphi_{j}}\right\| g_{3_{j}} \|_{N_{j}}\right) \cdot \prod_{i=1, i \neq j}^{n} L_{i}\right]<1,
$$

where r and L_{i} are defined in assumption (N7), then Eq(1.1) has a unique solution $y \in L_{\varphi}$ in Q_{r}. Proof. Let y and z be any two different solutions of Eq (1.1), then we obtain

$$
\begin{aligned}
|y-z|= & \left|\prod_{i=1}^{n} B_{i}(y)-\prod_{i=1}^{n} B_{i}(z)\right| \\
\leq & \left|\prod_{i=1}^{n} B_{i}(y)-B_{1}(z) \prod_{i=2}^{n} B_{i}(y)\right|+\left|B_{1}(z) \prod_{i=2}^{n} B_{i}(y)-B_{1}(z) B_{2}(z) \prod_{i=3}^{n} B_{i}(y)\right| \\
& +\cdots+\left|B_{n}(y) \prod_{i=1}^{n-1} B_{i}(z)-\prod_{i=1}^{n} B_{i}(z)\right| \\
\leq & \left|B_{1}(y)-B_{1}(z)\right| \cdot \prod_{i=2}^{n}\left|B_{i}(y)\right|+\left|B_{1}(z)\right| \cdot\left|B_{2}(y)-B_{2}(z)\right| \cdot \prod_{i=3}^{n}\left|B_{i}(y)\right| \\
& +\cdots+\left|B_{n}(y)-B_{n}(z)\right| \cdot \prod_{i=1}^{n-1}\left|B_{i}(z)\right| .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\|y-z\|_{\varphi} \leq & K\left\|B_{1}(y)-B_{1}(z)\right\|_{\varphi_{1}} \prod_{i=2}^{n}\left\|B_{i}(y)\right\|_{\varphi_{i}}+K\left\|B_{1}(z)\right\|_{\varphi_{1}}\left\|B_{2}(y)-B_{2}(z)\right\|_{\varphi_{2}} \prod_{i=3}^{n}\left\|B_{i}(y)\right\|_{\varphi_{i}} \\
& +\ldots+K\left\|B_{n}(y)-B_{n}(z)\right\|_{\varphi_{n}} \prod_{i=1}^{n-1}\left\|B_{i}(z)\right\|_{\varphi_{i}} . \tag{3.2}
\end{align*}
$$

To calculate the above inequality, we need the following estimation. For $j=1, \cdots, n$, and by using Lemma 2.1, we have

$$
\begin{aligned}
& \left\|B_{j}(y)-B_{j}(z)\right\|_{\varphi_{j}} \leq\left\|G_{2_{j}}(y)-G_{2_{j}}(z)\right\|_{\varphi_{j}}+\left\|G_{1_{j}}(y) A_{j}(y)-G_{1_{j}}(z) A_{j}(z)\right\|_{\varphi_{j}} \\
\leq & \left\|g_{2_{j}} \cdot\right\| y\left\|_{\varphi}-g_{2_{j}} \cdot\right\| z\left\|_{\varphi}\right\|_{\varphi_{j}}+\left\|G_{1_{j}}(y) A_{j}(y)-G_{1_{j}}(z) A_{j}(y)\right\|_{\varphi_{j}}+\left\|G_{1_{j}}(z) A_{j}(y)-G_{1_{j}}(z) A_{j}(z)\right\|_{\varphi_{j}} \\
\leq & \left\|g_{2_{j}} \cdot \mid\right\| y\left\|_{\varphi}-\right\| z\left\|_{\varphi}\right\|_{\varphi_{j}}+k_{1_{j}}\left\|G_{1_{j}}(y)-G_{1_{j}}(z)\right\|_{\varphi_{1}}\left\|A_{j}(y)\right\|_{\varphi_{2_{j}}}+k_{1_{j}}\left\|G_{1_{j}}(z)\right\|_{\varphi_{1 j}}\left\|A_{j}(y)-A_{j}(z)\right\|_{\varphi_{2_{j}}}
\end{aligned}
$$

$$
\begin{align*}
\leq & \left\|g_{2_{j}}\right\|_{\varphi_{j}}\|y-z\|_{\varphi}+k_{1_{j}}\left\|g_{1_{j}} \cdot\right\|\|y\|_{\varphi}-\|z\|_{\varphi}\left\|_{\varphi_{1}}\right\| J_{j}^{\alpha_{j}} G_{3_{j}}(y) \|_{\varphi_{2_{j}}} \\
& +k_{1_{j}}\left\|g_{1_{j}} \cdot\right\| z\| \|_{\varphi}\left\|_{\varphi_{1}}\right\| J_{j}^{\alpha_{j}} G_{3_{j}}(y)-J_{j}^{\alpha_{j}} G_{3_{j}}(z) \|_{\varphi_{2_{j}}} \\
\leq & \left\|g_{2_{j}}\right\|_{\varphi_{j}}\|y-z\|_{\varphi}+k_{1_{j}}\left\|g_{1_{j}}\right\| \varphi_{\varphi_{j}}\|y-z\|_{\varphi} \frac{2}{\Gamma\left(\alpha_{i}\right)}\left\|k_{j}\right\|_{\varphi_{2} j}\left\|g_{3_{j}}\right\|_{N_{j}}\|y\|_{\varphi} \\
& +k_{1_{j}}\left\|g_{1_{j}}\right\|\left\|_{\varphi_{j}} \cdot\right\| z\left\|_{\varphi} \frac{2}{\Gamma\left(\alpha_{j}\right)}\right\| k_{j}\left\|_{\varphi_{2}}\right\| g_{3_{j}}\left\|_{N_{j}}\right\| y-z \|_{\varphi} \\
\leq & \left(\left\|g_{2_{j}}\right\|\left\|_{\varphi_{j}}+\frac{4 k_{1_{j}} \cdot r\left\|k_{j}\right\|_{\varphi_{2}}}{\Gamma\left(\alpha_{j}\right)}\right\| g_{1_{j}}\| \|_{\varphi_{j}}\left\|g_{3_{j}}\right\|_{N_{j}}\right)\|y-z\|_{\varphi} . \tag{3.3}
\end{align*}
$$

By substituting from (3.1) and (3.3) in (3.2), we obtain

$$
\begin{aligned}
\|y-z\|_{\varphi} \leq & {\left[K\left(\left\|g_{2_{1}}\right\|_{\varphi_{1}}+\frac{4 k_{1_{1}} \cdot r\left\|k_{1}\right\|_{\varphi_{2_{1}}}}{\Gamma\left(\alpha_{1}\right)}\left\|g_{1_{1}}\right\|_{\varphi_{1}}\left\|g_{3_{1}}\right\|_{N_{1}}\right) \prod_{i=2}^{n} L_{i}\right.} \\
& +K L_{1}\left(\left\|g_{2_{2}}\right\|_{\varphi_{2}}+\frac{4 k_{1_{2}} \cdot r\left\|k_{2}\right\|_{\varphi_{2}}}{\Gamma\left(\alpha_{2}\right)}\left\|g_{1_{2}}\right\|_{\varphi_{1}}\left\|g_{3_{2}}\right\|_{N_{2}}\right) \prod_{i=3}^{n} L_{i} \\
& \left.+\ldots+K\left(\left\|g_{2_{n}}\right\|_{\varphi_{n}}+\frac{4 k_{1_{n}} \cdot r\left\|k_{n}\right\|_{\varphi_{2_{n}}}}{\Gamma\left(\alpha_{n}\right)}\left\|g_{1_{n}}\right\|_{\varphi_{1}}\left\|g_{3_{n}}\right\|_{N_{n}}\right) \prod_{i=1}^{n-1} L_{i}\right]\|y-z\|_{\varphi} \\
= & C \cdot\|y-z\|_{\varphi} .
\end{aligned}
$$

Since $C<1$, we get $y=z$ (a.e.), and we have finished.

4. Examples

We need to provide some examples to demonstrate our results.
Example 4.1. Put the N-functions $M_{i}(u)=N_{i}(u)=u^{2}$ and $\varphi_{2_{i}}(u)=\exp |u|-|u|-1$. We shall show that $J_{i}^{\alpha_{i}}: L_{N_{i}} \rightarrow L_{\varphi_{2}}, i=1, \cdots, n$ are continuous, and Lemma 2.1 is verified.

Indeed: For $s \in[1, e]$ and any $\alpha_{i} \in(0,1)$, we have

$$
k_{i}(s)=\int_{0}^{s} M_{i}\left(\tau^{\alpha_{i}-1}\right) d \tau=\int_{0}^{s} \tau^{2 \alpha_{i}-2} d \tau=\frac{s^{2 \alpha_{i}-1}}{2 \alpha_{i}-1} .
$$

Moreover,

$$
\int_{1}^{e} \varphi_{2_{i}}\left(k_{i}(s)\right) d \tau=\int_{1}^{e}\left(e^{\frac{2 \alpha_{i}-1}{2 \alpha_{i}-1}}-\frac{s^{2 \alpha_{i}-1}}{2 \alpha_{i}-1}-1\right) d s<\infty .
$$

Thus for $y \in L_{N_{i}}$, we get that $J_{i}^{\alpha_{i}}: L_{N_{i}} \rightarrow L_{\varphi_{2}}$ is continuous.
Remark 4.1. For more details and information about the acting and continuity assumptions of $G_{i}(y)=$ $g_{i}(s) \cdot y(s)$, (see our assumption (N5) and [15, Theorem 18.2]).
Example 4.2. Let $G_{j_{i}}(y)(s)=g_{i}(s) \cdot y(s), j=1,2,3$, and $i=1, \cdots n$, then we have

$$
y(s)=\prod_{i=1}^{n}\left(h_{i}(s)+g_{2_{i}}(s) \cdot y(s)+g_{1_{i}}(s) \cdot y(s) \int_{1}^{s}\left(\log \frac{s}{\tau}\right)^{\alpha_{i}-1} \frac{g_{3_{i}}(\tau) \cdot y(\tau)}{\tau} d \tau\right), \alpha_{i} \in(0,1), s \in[1, e],
$$

which provides a special case of Eq (1.1).

5. Conclusions

The current study demonstrates and studies two existence theorems, namely, (the existence and the uniqueness) the monotonic solutions for a general and abstract form of a product of n-quadratic Hadamard-type fractional integral equations in Orlicz spaces L_{φ}. The measure of non-compactness associated with Darbo's fixed-point theorem and fractional calculus are the main tools used to obtain our results in L_{φ}-spaces. For the upcoming work in this direction, we will look for some numerical solutions for similar problems in different function spaces.

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2024/R/1445).

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

References

1. V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009.
2. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science, 1993.
3. H. M. Srivastava, R. K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput., 118 (2001), 1-52. https://doi.org/10.1016/S0096-3003(99)00208-8
4. J. Hadamard, Essai sur l'étude des fonctions données par leur développment de Taylor, J. Math. Pures Appl., 8 (1892), 101-186.
5. A. M. Abdalla, H. A. H. Salem, On the monotonic solutions of quadratic integral equations in Orlicz space, J. Adv. Math. Comput. Sci., 30 (2019), 1-11. https://doi.org/10.9734/JAMCS/2019/46641
6. A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Mathematics, 5 (2020), 259-272. https://doi.org/10.3934/math. 2020017
7. M. Cichoń, H. A. H. Salem On the solutions of Caputo-Hadamard Pettis-type fractional differential equations, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 113 (2019), 3031-3053. https://doi.org/10.1007/s13398-019-00671-y
8. R. O'Neil, Fractional integration in Orlicz spaces. I, Trans. Amer. Math. Soc., 115 (1965), 300-328. https://doi.org/10.1090/S0002-9947-1965-0194881-0
9. J. Appell, M. Väth, Weakly singular Hammerstein-Volterra operators in Orlicz and Hölder spaces, Z. Anal. Anwend, 12 (1993), 663-676. https://doi.org/10.4171/ZAA/539
10. E. Nakai, On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type, Sci. Math. Jpn., 4 (2001), 901-915.
11. H. A. H. Salem, M. Cichon, Analysis of tempered fractional calculus in Hölder and Orlicz Spaces, Symmetry, 14 (2022), 1581. https://doi.org/10.3390/sym14081581
12. M. Cichoń, M. Metwali, Existence of monotonic L_{ϕ}-solutions for quadratic Volterra functionl integral equations, Electron. J. Qual. Theory Differ. Equ., 13 (2015), 1-16.
13. M. Metwali, On perturbed quadratic integral equations and initial value problem with nonlocal conditions in Orlicz spaces, Demonstratio Math., 53 (2020), 86-94. https://doi.org/10.1515/dema-2020-0052
14. I. Y. S. Cheng, J. J. Kozak, Application of the theory of Orlicz spaces to statistical mechanics. I. Integral equations, J. Math. Phys., 13 (1972), 51-58. https://doi.org/10.1063/1.1665850
15. M. A. Krasnosel'skii, Y. B. Rutitskii, Convex functions and Orlicz spaces, Gröningen: P. Noordhoff Ltd., 1961.
16. J. D. Weeks, S. A. Rice, J. J. Kozak, Analytic approach to the theory of phase transitions, J. Chem. Phys., 52 (1970), 2416-2426. https://doi.org/10.1063/1.1673324
17. J. Caballero, A. B. Mingarelli, K. Sadarangani, Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer, Electron. J. Differ. Equ., 2006 (2006), 1-11.
18. S. Chandrasekhar, Radiative transfer, Dover Publications, 1960.
19. S. Hu, M. Khavani, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261-266. https://doi.org/10.1080/00036818908839899
20. A. Alsaadi, M. Cichoń, M. M. A. Metwali, Integrable solutions for Gripenberg-type equations with m-product of fractional operators and applications to initial value problems, Mathematics, 10 (2022), 1172. https://doi.org/10.3390/math 10071172
21. H. H. G. Hashem, M. S. Zaki, Carthéodory theorem for quadratic integral equations of ErdélyiKober type, J. Fract. Calc. Appl., 4 (2013), 1-8.
22. M. M. A. Metwali, V. N. Mishra, On the measure of noncompactness in $L_{p}\left(\mathbb{R}^{+}\right)$and applications to a product of n-integral equations, Turkish J. Math., 47 (2023), 372-386. https://doi.org/10.55730/1300-0098.3365
23. M. Cichoń, M. M. A. Metwali, On solutions of quadratic integral equations in Orlicz spaces, Mediterr. J. Math., 12 (2015), 901-920. https://doi.org/10.1007/s00009-014-0450-x
24. E. Brestovanská, Qualitative behaviour of an integral equation related to some epidemic model, Demonstratio Math., 36 (2003), 603-609. https://doi.org/10.1515/dema-2003-0312
25. E. Brestovanská, M. Medveď, Fixed point theorems of the Banach and Krasnosel'skii type for mappings on m-tuple Cartesian product of Banach algebras and systems of generalized Gripenberg's equations, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 51 (2012), 27-39.
26. M. M. A. Metwali, On fixed point theorems and applications to product of n-integral operators in ideal spaces, Fixed Point Theory, 23 (2022), 557-572. https://doi.org/10.24193/fpt-ro.2022.2.09
27. M. M. A. Metwali, K. Cichoń, Solvability of the product of n-integral equations in Orlicz spaces, Rend. Circ. Mat. Palermo (2), 73 (2023), 171-187. https://doi.org/10.1007/s12215-023-00916-1
28. M. M. A. Metwali, On some properties of Riemann-Liouville fractional operator in Orlicz spaces and applications to quadratic integral equations, Filomat, 36 (2022), 6009-6020. https://doi.org/10.2298/FIL2217009M
29. M. M. A. Metwali, Solvability of quadratic Hadamard-type fractional integral equations in Orlicz spaces, Rocky Mountain J. Math., 53 (2023), 531-540. https://doi.org/10.1216/rmj.2023.53.531
30. M. M. A. Metwali, S. A. M. Alsallami, On Erdélyi-Kober fractional operator and quadratic integral equations in Orlicz spaces, Mathematics, 11 (2023), 3901. https://doi.org/10.3390/math11183901
31. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006), 1-523.
32. Ifronika, A. A. Masta, M. Nur, H. Gunawan, Generalized Hölder's inequality in Orlicz spaces, arXiv:1809.00788v1, 2018. https://doi.org/10.48550/arXiv.1809.00788
33. N. Erzakova, Compactness in measure and measure of noncompactness, Sib. Math. J., 38 (1997), 926-928. https://doi.org/10.1007/BF02673034
34. M. Väth, Volterra and integral equations of vector functions, CRC Press, 2000.

AIMS Press
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

