Research article

Results pertaining to fixed points in ordered metric spaces with auxiliary functions and application to integral equation

  • Received: 03 February 2024 Revised: 10 March 2024 Accepted: 13 March 2024 Published: 19 March 2024
  • MSC : 47H10, 54H25

  • This paper delves into fixed point findings within a complete partially ordered $ b $-metric space, focusing on mappings that adhere to weakly contractive conditions in the presence of essential topological characteristics. These findings represent modifications of established results and further extend analogous outcomes in the existing literature. The conclusions are substantiated by illustrative examples that strengthen the conclusion of the paper.

    Citation: N. Seshagiri Rao, Ahmad Aloqaily, Nabil Mlaiki. Results pertaining to fixed points in ordered metric spaces with auxiliary functions and application to integral equation[J]. AIMS Mathematics, 2024, 9(5): 10832-10857. doi: 10.3934/math.2024528

    Related Papers:

  • This paper delves into fixed point findings within a complete partially ordered $ b $-metric space, focusing on mappings that adhere to weakly contractive conditions in the presence of essential topological characteristics. These findings represent modifications of established results and further extend analogous outcomes in the existing literature. The conclusions are substantiated by illustrative examples that strengthen the conclusion of the paper.



    加载中


    [1] I. A. Bakhtin, The contraction principle in quasimetric spaces, Anal. Ulianowsk Gos. Fed. Inst., 30 (1989), 26–37.
    [2] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inf. Univ. Ostrav., 1 (1993), 5–11.
    [3] M. Abbas, B. Ali, T. Nazir, N. Dedović, B. Bin-Mohsin, S. Radenović, Solutions and Ulam-Hyers stability of differential inclusions involving Suzuki type multivalued mappings on $b$-metric spaces, Vojnoteh. Glas. Mil. Tech. Cour., 68 (2020), 438–487. https://doi.org/10.5937/vojtehg68-26718 doi: 10.5937/vojtehg68-26718
    [4] S. Aleksić, H. Huang, Z. D. Mitrović, S. Radenović, Remarks on some fixed point results in $b$-metric spaces, J. Fixed Point Theory Appl., 20 (2018), 147. https://doi.org/10.1007/s11784-018-0626-2 doi: 10.1007/s11784-018-0626-2
    [5] S. Aleksić, Z. D. Mitrović, S. Radenović, On some recent fixed point results for single and multi-valued mappings in $b$-metric spaces, Fasc. Math., 61 (2018), 5–16.
    [6] H. Faraji, D. Savić, S. Radenović, Fixed point theorems for Geraghty contraction type mappings in $b$-metric spaces and applications, Aximos, 8 (2019), 34. https://doi.org/10.3390/axioms8010034 doi: 10.3390/axioms8010034
    [7] H. Huang, S. Xu, Fixed point theorems of contractive mappings in cone $b$-metric spaces and applications, Fixed Point Theory Appl., 2013 (2013), 112. https://doi.org/10.1186/1687-1812-2013-112 doi: 10.1186/1687-1812-2013-112
    [8] M. Jovanović, Z. Kadelburg, S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl., 2010 (2010), 978121. https://doi.org/10.1155/2010/978121 doi: 10.1155/2010/978121
    [9] W. A. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, 2014. https://doi.org/10.1007/978-3-319-10927-5
    [10] W. Shatanawi, T. A. M. Shatnawi, New fixed point results in controlled metric type spaces based on new contractive conditions, AIMS Math., 8 (2023), 9314–9330. https://doi.org/10.3934/math.2023468 doi: 10.3934/math.2023468
    [11] A. Z. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via $A_{\nu}$-$\alpha$-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi $b$-metric space, AIMS Math., 8 (2023), 7225–7241. https://doi.org/10.3934/math.2023363 doi: 10.3934/math.2023363
    [12] M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in $S$-metric spaces, AIMS Math., 8 (2023), 4407–4441. https://doi.org/10.3934/math.2023220 doi: 10.3934/math.2023220
    [13] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379–1393. https://doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017
    [14] V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341–4349. https://doi.org/10.1016/j.na.2008.09.020 doi: 10.1016/j.na.2008.09.020
    [15] A. Aghajani, R. Arab, Fixed points of $(\psi, \phi, \theta)$-contractive mappings in partially ordered $b$-metric spaces and applications to quadratic integral equations, Fixed Point Theory Appl., 2013 (2013), 245.
    [16] A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered $b$-metric spaces, Math. Slovaca, 64 (2014), 941–960. https://doi.org/10.2478/s12175-014-0250-6 doi: 10.2478/s12175-014-0250-6
    [17] M. Akkouchi, Common fixed point theorems for two self mappings of a $b$-metric space under an implicit relation, Hacet. J. Math. Stat., 40 (2011), 805–810.
    [18] R. Allahyari, R. Arab, A. S. Haghighi, A generalization on weak contractions in partially ordered $b$-metric spaces and its applications to quadratic integral equations, J. Inequal. Appl., 2014 (2014), 355. https://doi.org/10.1186/1029-242X-2014-355 doi: 10.1186/1029-242X-2014-355
    [19] L. B. Ćirić, Some recent results in metrical fixed point theory, Ph. D. thesis, University of Belgrade, Serbia, 2003.
    [20] L. Ćirić, N. Cakić, M. Rajović, J. S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl., 2008 (2009), 131294. https://doi.org/10.1155/2008/131294 doi: 10.1155/2008/131294
    [21] D. Dorić, Common fixed point for generalized $(\psi, \phi)$-weak contractions, Appl. Math. Lett., 22 (2009), 1896–1900. https://doi.org/10.1016/j.aml.2009.08.001 doi: 10.1016/j.aml.2009.08.001
    [22] E. Graily, S. M. Vaezpour, R. Saadati, Y. J. Cho, Generalization of fixed point theorems in ordered metric spaces concerning generalized distance, Fixed Point Theory Appl., 2011 (2011), 30. https://doi.org/10.1186/1687-1812-2011-30 doi: 10.1186/1687-1812-2011-30
    [23] H. Huang, S. Radenović, J. Vujaković, On some recent coincidence and immediate consequences in partially ordered $b$-metric spaces, Fixed Point Theory Appl., 2015 (2015), 63. https://doi.org/10.1186/s13663-015-0308-3 doi: 10.1186/s13663-015-0308-3
    [24] O. Popescu, Fixed points for $(\psi, \varphi)$-weak contractions, Appl. Math. Lett., 24 (2011), 1–4. https://doi.org/10.1016/j.aml.2010.06.024 doi: 10.1016/j.aml.2010.06.024
    [25] J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized $(\psi, \phi)_s$-contractive mappings in ordered $b$-metric spaces, Fixed Point Theory Appl., 2013 (2013), 159. https://doi.org/10.1186/1687-1812-2013-159 doi: 10.1186/1687-1812-2013-159
    [26] J. R. Roshan, V. Parvaneh, I. Altun, Some coincidence point results in ordered $b$-metric spaces and applications in a system of integral equations, Appl. Math. Comput., 226 (2014), 725–737. https://doi.org/10.1016/j.amc.2013.10.043 doi: 10.1016/j.amc.2013.10.043
    [27] N. Seshagiri Rao, K. Kalyani, Generalized contractions to coupled fixed point theorems in partially ordered metric spaces, J. Sib. Fed. Univ. Math. Phys., 13 (2020), 492–502. https://doi.org/10.17516/1997-1397-2020-13-4-492-502 doi: 10.17516/1997-1397-2020-13-4-492-502
    [28] N. S. Rao, K. Kalyani, K. Khatri, Contractive mapping theorems in partially ordered metric spaces, Cubo, 22 (2020), 203–214. https://doi.org/10.4067/s0719-06462020000200203 doi: 10.4067/s0719-06462020000200203
    [29] N. S. Rao, K. Kalyani, Generalized fixed point results of rational type contractions in partially ordered metric spaces, BMC Res. Notes, 14 (2021), 390. https://doi.org/10.1186/s13104-021-05801-7 doi: 10.1186/s13104-021-05801-7
    [30] W. Shatanawi, A. Pitea, R. Lazović, Contraction conditions using comparison functions on $b$-metric spaces, Fixed Point Theory Appl., 2014 (2014), 135. https://doi.org/10.1186/1687-1812-2014-135 doi: 10.1186/1687-1812-2014-135
    [31] M. U. Ali, T. Kamran, M. Postolache, Solution of Volterra integral inclusion in $b$-metric spaces via new fixed point theorem, Nonlinear Anal., 22 (2017), 17–30. https://doi.org/10.15388/NA.2017.1.2 doi: 10.15388/NA.2017.1.2
    [32] T. Kamran, M. Postolache, M. U. Ali, Q. Kiran, Feng and Liu type $F$-contraction in $b$-metric spaces with application to integral equations, J. Math. Anal., 7 (2016), 18–27.
    [33] N. S. Rao, Some coincidence point theorems and an application to integral equation in partially ordered metric spaces, Inf. Sci. Lett., 12, (2023), 2951–2959. https://doi.org/10.18576/isl/120722 doi: 10.18576/isl/120722
    [34] N. S. Rao, K. Kalyani, Fixed points of generalized $(\phi, \psi)_s$-contractions in partially ordered $b$-metric spaces, BMC Res. Notes, 15 (2022), 354.
    [35] N. S. Rao, K. Kalyani, Fixed point results of $(\phi, \psi)$-weak contractions in ordered $b$-metric spaces, CuBo, 24 (2022), 343–368. https://doi.org/10.56754/0719-0646.2402.0343 doi: 10.56754/0719-0646.2402.0343
    [36] J. Jachymski, Equivalent conditions for generalized contractions on (ordered) metric spaces, Nonlinear Anal., 74 (2011), 768–774. https://doi.org/10.1016/j.na.2010.09.025 doi: 10.1016/j.na.2010.09.025
    [37] B. Mituku, K. Kalyani, N. S. Rao, Some fixed point results of generalized $(\phi, \psi)$-contractive mappings in ordered $b$-metric spaces, BMC Res. Notes, 13 (2020), 537. https://doi.org/10.1186/s13104-020-05354-1 doi: 10.1186/s13104-020-05354-1
    [38] N. S. Rao, K. Kalyani, Fixed point theorems for nonlinear contractive mappings in ordered $b$-metric space with auxiliary function, BMC Res. Notes, 13 (2020), 451. https://doi.org/10.1186/s13104-020-05273-1 doi: 10.1186/s13104-020-05273-1
    [39] N. S. Rao, K. Kalyani, Coupled fixed point theorems with rational expressions in partially ordered metric spaces, J. Anal., 28 (2020), 1085–1095. https://doi.org/10.1007/s41478-020-00236-y doi: 10.1007/s41478-020-00236-y
    [40] N. S. Rao, Z. D. Mitrović, D. Santina, N. Mlaiki, Fixed point theorems of almost generalized contractive mappings in $b$-metric spaces and an application to integral equation, Mathematics, 11 (2023), 2580. https://doi.org/10.3390/math11112580 doi: 10.3390/math11112580
    [41] N. S. Rao, Coupled fixed points of $(\hat{\phi}, \hat{\psi}, \hat{\theta})$-contractive mappings in partially ordered $b$-metric spaces, Heliyon, 8 (2022), e12442. https://doi.org/10.1016/j.heliyon.2022.e12442 doi: 10.1016/j.heliyon.2022.e12442
    [42] N. S. Rao, K. Kalyani, B. Mitiku, Fixed point results of almost generalized $(\phi, \psi, \theta)_s$-contractive mappings in ordered $b$-metric spaces, Afr. Mat., 33 (2022), 64. https://doi.org/10.1007/s13370-022-00992-z doi: 10.1007/s13370-022-00992-z
    [43] Y. Zhang, B. Hofmann, Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems, Inverse Probl. Imag., 15 (2021), 229–256. https://doi.org/10.3934/ipi.2020062 doi: 10.3934/ipi.2020062
    [44] G. Lin, X. Cheng, Y. Zhang, A parametric level set based collage method for an inverse problem in elliptic partial differential equations, J. Comput. Appl. Math., 340 (2018), 101–121. https://doi.org/10.1016/j.cam.2018.02.008 doi: 10.1016/j.cam.2018.02.008
    [45] A. Shcheglov, J. Li, C. Wang, A. Ilin, Y. Zhang, Reconstructing the absorption function in a quasi-linear sorption dynamic model via an iterative regularizing algorithm, Adv. Appl. Math. Mech., 16 (2023), 237–252. https://doi.org/10.4208/aamm.OA-2023-0020 doi: 10.4208/aamm.OA-2023-0020
    [46] N. S. Rao, K. Kalyani, K. Prasad, Fixed point results for weak contractions in partially ordered $b$-metric space, BMC Res. Notes, 14 (2021), 263. https://doi.org/10.1186/s13104-021-05649-x doi: 10.1186/s13104-021-05649-x
    [47] N. Hussain, R. Saadati, R. P. Agrawal, On the topology and $wt$-distance on metric type spaces, Fixed Point Theory Appl., 2014 (2014), 88. https://doi.org/10.1186/1687-1812-2014-88 doi: 10.1186/1687-1812-2014-88
    [48] A. A. Firozjah, H. Rahimi, G. Soleimani Rad, Fixed and periodic point results in cone $b$-metric spaces over Banach algebras; a survey, Fixed Point Theory, 22 (2021), 157–168. https://doi.org/10.24193/fpt-ro.2021.1.11 doi: 10.24193/fpt-ro.2021.1.11
    [49] K. Fallahi, G. S. Rad, A. Fulga, Best proximity points for ($\phi$-$\psi$)-weak contraction and some applications, Filomat, 37 (2023), 1835–1842. https://doi.org/10.2298/FIL2306835F doi: 10.2298/FIL2306835F
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(796) PDF downloads(64) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog