Research article Special Issues

Double inertial extrapolations method for solving split generalized equilibrium, fixed point and variational inequity problems

  • Received: 24 December 2023 Revised: 23 February 2024 Accepted: 08 March 2024 Published: 15 March 2024
  • MSC : 26A33, 34B10, 34B15

  • This article proposes an iteration algorithm with double inertial extrapolation steps for approximating a common solution of split equilibrium problem, fixed point problem and variational inequity problem in the framework of Hilbert spaces. Unlike several existing methods, our algorithm is designed such that its implementation does not require the knowledge of the norm of the bounded linear operator and the value of the Lipschitz constant. The proposed algorithm does not depend on any line search rule. The method uses a self-adaptive step size which is allowed to increase from iteration to iteration. Furthermore, using some mild assumptions, we establish a strong convergence theorem for the proposed algorithm. Lastly, we present a numerical experiment to show the efficiency and the applicability of our proposed iterative method in comparison with some well-known methods in the literature. Our results unify, extend and generalize so many results in the literature from the setting of the solution set of one problem to the more general setting common solution set of three problems.

    Citation: James Abah Ugboh, Joseph Oboyi, Hossam A. Nabwey, Christiana Friday Igiri, Francis Akutsah, Ojen Kumar Narain. Double inertial extrapolations method for solving split generalized equilibrium, fixed point and variational inequity problems[J]. AIMS Mathematics, 2024, 9(4): 10416-10445. doi: 10.3934/math.2024509

    Related Papers:

  • This article proposes an iteration algorithm with double inertial extrapolation steps for approximating a common solution of split equilibrium problem, fixed point problem and variational inequity problem in the framework of Hilbert spaces. Unlike several existing methods, our algorithm is designed such that its implementation does not require the knowledge of the norm of the bounded linear operator and the value of the Lipschitz constant. The proposed algorithm does not depend on any line search rule. The method uses a self-adaptive step size which is allowed to increase from iteration to iteration. Furthermore, using some mild assumptions, we establish a strong convergence theorem for the proposed algorithm. Lastly, we present a numerical experiment to show the efficiency and the applicability of our proposed iterative method in comparison with some well-known methods in the literature. Our results unify, extend and generalize so many results in the literature from the setting of the solution set of one problem to the more general setting common solution set of three problems.



    加载中


    [1] M. Aphane, L. Jolaoso, K. Aremu, O. Oyewole, An inertial-viscosity algorithm for solving split generalized equilibrium problem and a system of demimetric mappings in Hilbert spaces, Rend. Circ. Mat. Palermo, II. Ser, 72 (2023), 1599–1628. https://doi.org/10.1007/s12215-022-00761-8 doi: 10.1007/s12215-022-00761-8
    [2] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123–145.
    [3] C. Byrne, Y. Censor, A. Gilbali, S. Reich, The split common null point problem, J. Nonlinear Convex A., 13 (2012), 759–775.
    [4] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities Hilbert space, J. Optim. Theory Appl., 148 (2011), 318–335. http://dx.doi.org/10.1007/s10957-010-9757-3 doi: 10.1007/s10957-010-9757-3
    [5] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity radiation therapy, Phys. Med. Biol., 51 (2006), 2353. http://dx.doi.org/10.1088/0031-9155/51/10/001 doi: 10.1088/0031-9155/51/10/001
    [6] Y. Censor, A. Gibali, S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Method. Softw., 26 (2011), 827–845. http://dx.doi.org/10.1080/10556788.2010.551536 doi: 10.1080/10556788.2010.551536
    [7] Y. Censor, A. Gibali, S. Reich, Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space, Optimization, 61 (2011), 1119–1132. http://dx.doi.org/10.1080/02331934.2010.539689 doi: 10.1080/02331934.2010.539689
    [8] B. Djafari-Rouhani, K. Kazmi, M. Farid, Common solution to systems of variational inequalities and fixed point problems, Fixed Point Theory, 18 (2017), 167–190. http://dx.doi.org/10.24193/FPT-RO.2017.1.14 doi: 10.24193/FPT-RO.2017.1.14
    [9] G. Ficher, Sul pproblem elastostatico di signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat, 34 (1963), 138–142.
    [10] M. Farid, K. Kazmi, A new mapping for finding a common solution of split generalized equilibrium problem, variational inequality problem and fixed point problem, Korean J. Math., 27 (2019), 297–327. http://dx.doi.org/10.11568/kjm.2019.27.2.297 doi: 10.11568/kjm.2019.27.2.297
    [11] B. He, A class of projection and contraction methods for monotone variational inequalities, Appl. Math. Optim., 35 (1997), 69–76. http://dx.doi.org/10.1007/BF02683320 doi: 10.1007/BF02683320
    [12] S. He, H. Xu, Uniqueness of supporting hyperplanes and an alternative to solutions of variational inequalities, J. Glob. Optim., 57 (2013), 1375–1384. http://dx.doi.org/10.1007/s10898-012-9995-z doi: 10.1007/s10898-012-9995-z
    [13] H. Iiduka, Acceleration method for convex optimization over the fixed point set of a nonexpansive mapping, Math. Program., 149 (2015), 131–165. http://dx.doi.org/10.1007/s10107-013-0741-1 doi: 10.1007/s10107-013-0741-1
    [14] K. Kazmi, S. Rizvi, Iterative approximation of a common solution of a split equilibrium problem, a variational inequality problem and a fixed point problem, Journal of the Egyptian Mathematical Society, 21 (2013), 44–51. http://dx.doi.org/10.1016/j.joems.2012.10.009 doi: 10.1016/j.joems.2012.10.009
    [15] K. Kazmi, S. Rizvi, Iterative approximation of a common solution of a split generalized equilibrium problem and a fixed point problem for nonexpansive semigroup, Math. Sci., 7 (2013), 1. http://dx.doi.org/10.1186/2251-7456-7-1 doi: 10.1186/2251-7456-7-1
    [16] G. Korpelevich, An extragradient method for finding saddle points and for other problems, Ekon. Mat. Metody., 12 (1976), 747–756.
    [17] M. Lukumon, A. Mebawondu, A. Ofem, C. Agbonkhese, F. Akutsah, O. Narain, An efficient iterative method for solving quasimonotone bilevel split variational inequality problem, Adv. Fixed Point Theory, 13 (2023), 26. http://dx.doi.org/10.28919/afpt/8269 doi: 10.28919/afpt/8269
    [18] P. Maingé, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47 (2008), 1499–1515. http://dx.doi.org/10.1137/060675319 doi: 10.1137/060675319
    [19] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275–283. http://dx.doi.org/10.1007/s10957-011-9814-6 doi: 10.1007/s10957-011-9814-6
    [20] A. Ofem, A. Mebawondu, G. Ugwunnadi, H. Isik, O. Narain, A modified subgradient extragradient algorithm-type for solving quasimonotone variational inequality problems with applications, J. Inequal. Appl., 2023 (2023), 73. http://dx.doi.org/10.1186/s13660-023-02981-7 doi: 10.1186/s13660-023-02981-7
    [21] A. Ofem, A. Mebawondu, G. Ugwunnadi, P. Cholamjiak, O. Narain, Relaxed Tseng splitting method with double inertial steps for solving monotone inclusions and fixed point problems, Numer. Algor., in press. http://dx.doi.org/10.1007/s11075-023-01674-y
    [22] A. Ofem, A. Mebawondu, C. Agbonkhese, G. Ugwunnadi, O. Narain, Alternated inertial relaxed Tseng method for solving fixed point and quasi-monotone variational inequality problems, Nonlinear Functional Analysis and Applications, 29 (2024), 131–164. http://dx.doi.org/10.22771/nfaa.2024.29.01.10 doi: 10.22771/nfaa.2024.29.01.10
    [23] S. Saejung, P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal.-Theor., 75 (2012), 742–750. http://dx.doi.org/10.1016/j.na.2011.09.005 doi: 10.1016/j.na.2011.09.005
    [24] M. Safari, F. Moradlou, A. Khalilzadah, Hybrid proximal point algorithm for solving split equilibrium problems and its applications, Hacet. J. Math. Stat., 51 (2022), 932–957. http://dx.doi.org/10.15672/hujms.1023754 doi: 10.15672/hujms.1023754
    [25] Y. Shehu, O. Iyiola, Projection methods with alternating inertial steps for variational inequalities: weak and linear convergence, Appl. Numer. Math., 157 (2020), 315–337. http://dx.doi.org/10.1016/j.apnum.2020.06.009 doi: 10.1016/j.apnum.2020.06.009
    [26] Y. Shehu, O. Iyiola, F. Ogbuisi, Iterative method with inertial terms for nonexpansive mappings, Applications to compressed sensing, Numer. Algor., 83 (2020), 1321–1347. http://dx.doi.org/10.1007/s11075-019-00727-5 doi: 10.1007/s11075-019-00727-5
    [27] Y. Shehu, P. Vuong, A. Zemkoho, An inertial extrapolation method for convex simple bilevel optimization, Optim. Method. Softw., 36 (2021), 1–19. http://dx.doi.org/10.1080/10556788.2019.1619729 doi: 10.1080/10556788.2019.1619729
    [28] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Math. Acad. Sci., 258 (1964), 4413.
    [29] W. Takahashi, Nonlinear functional analysis, Yokohama: Yokohama Publishers, 2000.
    [30] W. Takahashi, The split common fixed point problem and the shrinking projection method in Banach spaces, J. Convex Anal., 24 (2017), 1015–1028.
    [31] W. Takahashi, H. Xu, J. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., 23 (2015), 205–221. http://dx.doi.org/10.1007/s11228-014-0285-4 doi: 10.1007/s11228-014-0285-4
    [32] W. Takahashi, C. Wen, J. Yao, The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point Theor., 19 (2018), 407–419. http://dx.doi.org/10.24193/fpt-ro.2018.1.32 doi: 10.24193/fpt-ro.2018.1.32
    [33] D. Thong, L. Liu, Q. Dong, L. Long, P. Tuan, Fast relaxed inertial Tseng's method-based algorithm for solving variational inequality and fixed point problems in Hilbert spaces, J. Comput. Appl. Math., 418 (2023), 114739. http://dx.doi.org/10.1016/j.cam.2022.114739 doi: 10.1016/j.cam.2022.114739
    [34] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431–446. http://dx.doi.org/10.1137/S0363012998338806 doi: 10.1137/S0363012998338806
    [35] F. Wang, H. Xu, Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal.-Theor., 74 (2011), 4105–4111. http://dx.doi.org/10.1016/j.na.2011.03.044 doi: 10.1016/j.na.2011.03.044
    [36] Z. Xie, G. Cai, B. Tan, Inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and fixed point problems in Hilbert spaces, Optimization, in press. http://dx.doi.org/10.1080/02331934.2022.2157677
    [37] J. Yang, H. Liu, The subgradient extragradient method extended to pseudomonotone equilibrium problems and fixed point problems in Hilbert space, Optim. Lett., 14 (2020), 1803–1816. http://dx.doi.org/10.1007/s11590-019-01474-1 doi: 10.1007/s11590-019-01474-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(728) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog