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1. Introduction

Let K be a nonempty, closed, convex subset of a real Hilbert space H with the inner product (-, -)
and the induced norm || - ||, and A : H — H be an operator. The classical variational inequality problem
(VIP) was considered independently by Stampacchia [28] and Fichera [9] and it is defined as: Find
s € K such that

(As,t—5)>0, VteK. (L.1)
The solution set of (1.1) is denoted by VI(K, A), that s,
VIIK,A) ={s € K : (As,t—s) >0, YteK} (1.2)

The the study of theory of VIP has received massive attention in the last few years as a result of its
enormous applications in diverse fields. One of the widely used methods for solving VIP which known
as the extragradient method was introduced by Korpelevich [16] as follows:

S1 € K,
by = PK(sm - /lmAsm)a (13)
Sm+l = PK(tm - /lmAtm) YV meN,

where 4,, € (0, %) and L is the Lipschitz constant of A. Under some standard assumptions, it was
shown that the sequence {s,,} converges to the solution set VI(K, A). The method (1.3) has two major
limitations. The first is that the step-size (4,,) depends on the Lipschitz constant and and the second is
that, calculation of two projections are involved. These limitations affect the computational efficiency
of the method. In other to avoid these setbacks, many methods have been studied in the last few decades
(see, for example, [4,6,7,11,17,20-22,25-28,34]).

Let § : K — K be an operator. An element g € K fulfilling Sg = ¢ is known as the fixed point
of S. Let F(S) = {g € K : Sq = ¢} stand for the set of all fixed points of S. The concept of fixed
point can be applied to several areas of engineering and applied sciences problems such as compressed
sensing, game theory, approximation theory, mathematical economics and mathematics of fractals. It
is important to note that monotone inclusion, convex feasibility, variational inequality, equilibrium,
convex optimization and image/signal restoration problems can all be converted into a problem of
finding the fixed point of some appropriate nonlinear operator.

Another interesting optimization problem is the equilibrium problem (EP) introduced and studied
by Blum and Oettli [2]. Some well-known problems in applied sciences and engineering are special
types of the EP. For example, minimization problems, mathematical programming problems, saddle
point problems, Nash equilibrium problems, fixed point problems, vector minimization problems, and
so on. The EP is defined as finding s* € C such that

F(s*,1) > 0, (1.4)

forall t € K, where F : KX K — R is a bifunction. The solution set of EP is denoted by EP(F). Due to
the numerous applications of the theory of EP (1.4), many authors have extended and generalized it in
various directions. For instance, the following split equilibrium problem (SEP): Let K C H,, Q C H,,
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Fi:KxXK—>Rand F,: Q%X Q — R be two bifunctions and suppose that A : H; — H, is a bounded
linear operator. The SEP is to find s* € K such that

Fi(s*,s) >0V sekK (1.5)
and such that
" =As" € Q solves Fy(t',y) >0 Vte Q. (1.6)

We denote the solution set of (1.5) and (1.6) by I' = {s € EP(F;) : As € EP(F,)}. Kazmi and Rizvi
studied a Halpern type iterative method to approximate the common solution of SEP, VIP, and fixed
point problem (FPP) for a nonexpansive mapping 7" on K. The iterative method is given as follows:

Uy = T (s + YA (T = DAs,),
Iy = PK(Mm - /lmfum)» (17)

Sm+1 = AV +ﬁmsm + ymTtm’

where r,, C (0,00),4,, € (0,27) and y € (0, m), {a,.}, {8}, and {y,,} are sequences in (0, 1). They
established that under some standard conditions, the sequence derived by the iterative algorithm (1.7)
converges strongly to the common solution of SEP, VIP, and FPP for a nonexpansive mapping.
Obviously, the above iterative algorithm have some drawbacks. For example, the way the step sizes
{4}, and vy are defined, and the cost operator (f) of the VIP is inversely strongly monotone. In the
light of this, it will be interesting if one can further modify the above iterative method. The notion of
SEP was generalized by the concept of generalized split equilibrium problem (GSEP). This problem is
defined as: Find

s" €K such that F(s*, s) + ¢1(s,s") — d1(s",57) >0, Vs €K, (1.8)
and such that
t =As" € Qsolves Fp(s", s) + ¢1(s,5°) — p1(s",s) >0, Ve Q, (1.9)

where ¢; : K X K — R and ¢, : Q X O — R are nonlinear mappings. It is easy to see that (1.8) is
the generalized equilibrium problem (GEP), and we denote its solution set by Sol (GEP (1.8)). The
concept of GSEP generalizes the notion of multiple -sets split feasibility problems. It is also well-
known that the split variational inequality problem is a special case of the GSEP [3, 5, 19]. Several
authors have introduced and studied different iterative algorithms for problems (1.8) and (1.9). For
details, see [1, 14, 15,31] and the references therein. In particular, Farid and Kazmi [10] introduced
and studied an iterative algorithm for approximating the solution of a fixed point problem, variational
inequality problem, and (1.8) and (1.9). They gave the following iterative algorithm:

Uy = Ty, " (5 + SAT(T, ) = DAs,),
tm = Pg(uy, — A Buy,), (110)
Sm+1 = amyf(KrnSln)V +,8msm + ((1 _IBm)I - amD)KmTtm’
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where D is a strongly positive bounded linear operator, B is 7-inverse strongly monotone mapping,
An € (0,27),0 € (0, %), and K, is a finite family of nonexpansive mapping. It is easy to see that the
above iterative algorithm has a lot of drawbacks. Thus, it is natural to ask if one can develop a better
version of the above iterative algorithm.

The potential use of such a common solution problem to mathematical models whose constraints
can be described as GSEP, FPP, and VIP is one of our motivations for exploring it. Signal processing,
network resource allocation, and image recovery are examples of practical problems where this occurs
(see [13,18,33] and the references therein).

Inspired by the above results and the ongoing research interest in this direction, in this study, we
propose an iterative method with double inertial extrapolation steps for approximating the common
solution of GSEP, FPP, and VIP in the framework of Hilbert spaces. Unlike several existing methods,
our algorithm is designed such that its implementation does not require the knowledge of the norm
of the bounded linear operator and the value of the Lipschitz constant. The proposed method does
not depend on any line search rule. The suggested algorithm uses a self-adaptive step size, which
is allowed to increase from iteration to iteration. Furthermore, using some mild assumptions, we
establish a strong convergence theorem for the proposed algorithm. Lastly, we present a numerical
experiment to show the efficiency and the applicability of our proposed iterative method in comparison
with some well-known methods in the literature. Unlike the results obtained in [14], estimation of
spectral radius of the bounded linear operator and its adjoint is not required in our results. Furthermore,
the class of demimetric mappings, which is embedded in our method, is more general than the classes of
nonexpansive, quasi-nonexpansive, strictly pseudocontraction, and demicontraction mappings, which
have been studied by many authors (see, for example, [36,37] and the references therein). Our results
unify, extend, and generalize so many results in the literature, from the setting of the solution set of
one problem to the more general setting common solution set of three problems.

The remaining part of this article is arranged as follows: In Section 2, we give some useful results
and definitions in this study. In Section 3, we establish the strong convergence results of the suggested
method. In Section 4, we present a numerical experiment to show the efficiency and applicability of
our method. Lastly, in Section 5, we give a conclusion of our study.

2. Preliminaries
In this section, we present some relevant results which are needed in the sequel. Let H be a real

Hilbert space. The weak and strong convergence of the sequence {s,,} to s as m — oo is denoted by
“—>”and “—7, respectively. For any s,7 € H and « € [0, 1], it is well-known that

lls = 2> = IIsll* = 2¢s, 2) + [1l>. (2.1)

lls + 21> = lIsI> + 2¢s, £) + [zl (2.2)

s = f> < |Isl® + 2¢z, s — ©). 2.3)

llaes + (1 = a)ll” = allsl® + (1 = )lldl* — a1 — @)lls — I*. (2.4)

llas + Bt + vz = ellslI® + Bl + yllzIl* — aBlls — > — aylls -zl = Bylit — 2. (2.5)
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Definition 2.1. Let T be a self mapping defined on H, then the operator T is said to be

(a) L-Lipschitz continuous if there exists L > 0 such that
ITs — Tt < Llls — I,

forall s,t € H If L =1, then T is called nonexpansive;
(b) monotone if

(Ts—Tt,s—1)>0, Vs, t€ H;
(c) pseudomonotone if
(Ts,t—s5)>0=>(Tt,t—s)>0, Vs,t € H;

(d) B- strongly monotone if there exists a > 0, such that

(Ts—Tt,s—ty>pBlls—1|>, Vs,teH;
(e) firmly nonexpansive

\Ts—=TH* <(Ts-=Tt,s—1) VY s,t€H,;

or equivalently
ITs=THP <lls—A° = =T)s— I =T)I* V s,t € H;
(f) quasi-nonexpansive if F(T) # 0 and
(s—t,Ts—Tt) > ||Ts—p||2 VseH and p € F(T);

(g) sequentially weakly continuous if for each sequence {s,,}, we obtain that {s,,} converges weakly to
s, implies that T's,, converges weakly to T s.

Let K stand for a closed, nonempty, and convex subset of H. For every h € H, a unique point Pxh € K
exists such that
i — Pxhll < [lh —yll Yy € K.

P is known as the metric projection of H onto K. The operator P is a nonexpansive and it satisfies
(s =Y, Pks = Pxy) = ||Pgs — Pl (2.6)
for all s,¢ € H. Moreover, Py is characterized by the feature
lls = 2* > lls = Pitl® + llt = Pl
and forall s € Handt € K.

Lemma 2.1. [29] Let K be a nonempty, convex, and closed subset of H and A : K — H a continuous
and monotone operator, then for s € K, we have

se VI(K,A) ifandonlyif (At,t—s)>0 VteKk.

AIMS Mathematics Volume 9, Issue 4, 10416-10445.



10421

Lemma 2.2. [32] Let K be nonempty, convex and closed subset of a real Hilbert space H. For every
s€ Hand z € K, one has 7 = Pgs ifand only if (s —z,z—t) <0Vt e K.

For any nonexpansive mapping 7', it is well known the set of fixed points of T is convex and closed.

Also, T fulfills the following inequality

((s=Ts)— (=T, Tt—=Ts) < %ll(Ts —5)—(Tt-0)|* Vs,t€H. 2.7)

Thus, for all s € H and s* € F(T), we get
1
(s=Ts,s"=Ts) < E||Ts —s|’, Vs, €H. (2.8)

Lemma 2.3. [35] Let T be a self mapping defined on H, then the following statements are equivalent:

(1) T is directed;
(2) the following relation holds

s = Ts|* < (s — q,s—Ts) VYqe F(T), s € H, (2.9)

(3) the following relation holds
ITs—ql* <lls—gl=lls=Tsl* YqeF(T), seH. (2.10)
Lemma 24. [8]Let F : KX K — Rand ¢ : K X K — R be bifunctions satisfying the following

assumptions:

Assumption 2.1. (/) F(s,s)=0forall s € K;
(2) F is monotone. That is F(s,t) + F(t,5) <0 forall s € K;
(3) for each s,t,z € K, limsup,_ ;. F(gz+ (1 — g)s,1) < F(s,1);
(4) forevery s € K, t — F(s,t) is convex and lower semi-continuous;
(5) ¢(, ) is weakly continuous and ¢(-,y) is convex;
(6) ¢ is skew-symmetric, that is,

(s, 8) — d(s, 1) + p(t, 1) — (1, 5) >0, ¥ s,t€K.

Next, we define T . H > K as follows:

TED(2) = {s € K : F(s,t) + ¢(t, 5) — ¢(s, 5) + %(t— s,5—2)20, YreK}, (2.11)

where r is a positive real number.
Assume that F,¢ : K X K — R satisfies Assumption 2.1 and for any r > 0 and x € H, define
TF . H — K as in (2.11), then the following hold:

(1) T is nonempty and single valued;
(2) T s firmly nonexpansvie;

(3) T = Sol(GEP)(1.8);

(4) Sol(GEP) is closed and convex.
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Lemma 2.5. [23] Let {a,,} be a sequence of positive real numbers, {a,,} be a sequence of real numbers
in (0, 1) such that 3,,_, a,, = oo, and {d,,} be a sequence of real numbers. Suppose that

A+l < (1 - a’m)am + a’mdm»m = 1.
If imsup,_, ., d,,, <0 for all subsequences {a,, } of {a,,} satisfying the condition

liminf{a,,+1 — am} >0,

k—o0
then, lim a,, = 0.
k— o0

Lemma 2.6. [30,32] Let K be a nonempty, closed, and convex subset of a Hilbert space H and let
T : K — H be a p-demimetric operator with p € (—oo,1) and F(T) # 0. Let ¥ be a real number
withO <y <1 —-pandlet D= (1—-y)I +yT, then, D is a quasi-nonexpansive operator.

Lemma 2.7. [30] Let K be a nonempty, bounded, closed, and convex subset of a uniformly convex
Banach space and F : K — K be a nonexpansive mapping. For each s € K and the Cesaro mean
Tys = + X! Tis, then limsup,,_, ., IT,us — F(T,5)ll = 0.

Definition 2.2. A function k : H — R is said to be Gateaux differentiable at s € H, if there exists an
element denoted by k'(s) € H such that
. k(s + hy) —k(s)
lim

h—0

= (. k'(s))
forally € H,h € [0, 1], where k'(s) is called the Gateaux differential of k at s. We also recall that if

for each s € H, k is Gateaux differentiable at s, then k is Gateaux differentiable on H.

Definition 2.3. Let H be a real Hilbert space. A function k : H — R U oo is said to be weakly lower
semicontinuous at s € H if
lim k(s,,) > k(s)

holds for any arbitrary sequence {s,,} in H, satisfying the fact that {s,,} converges weakly to s.

Definition 2.4. A convex set h : H — R is said to be subdifferentiable at a point s € H if the set
Oh(s) ={p € H: h(y) = h(p) +(p,y —s) Vy€ H} (2.12)

is nonempty. Each element in Oh(s) is called a subgradient of h at s. We note that if h is subdifferentiable
at each s € H then h is subdifferentiable on H. It is also known that if h is Gateaux differentiable at
s, then h is subdifferential at s and 0h(s) = {l'(s)}.

Lemma 2.8. [12] Let VI(K, A) be the solution set for the VIP (1.1) such that VI(K,A) # 0 and K is
defined as K := {s € H : h(s) < 0}, where h : H — R is a continuously differentiable convex function.
Let p € K, and p € VI(K, A) if and only if,

(1) A(p) =0or
(2) p € 0K and there exists T > 0 such that A(p) = Th’(p), where K denotes the boundary of K.
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3. Main results

In this section, we present our proposed method and also establish its convergence results.
Assumption 3.1. Condition A. Suppose

(1) Let H, and H, be two real Hilbert spaces.

(2) Let K and Q be nonempty closed convex subsets of Hilbert spaces H, and H,, respectively such
that K is defined as

K ={se H,:q(s) <0},

where q : Hy — R and satisfies the following conditions:

(a) q is a continuously differentiable convex function such that q'(.) is L,-Lipschitz continuous
and q is weakly lower semicontinuous on H,.

(3) Let A : Hi — H, be a bounded linear operator and f : K — K be a contraction with contraction
constant k € [0, 1).

(4) Let F1 : KXK - R,¢p1 : KXK - R, F, : OXQ — R, and ¢, : QX Q — R be bifunctions
satisfying Assumptions 2.1. F, is upper semi-continuous in the first argument.

(5) B: H — H, is a monotone, L,- Lipschitz continuous operator (Lipschitz constant need not to be
known).

(6) Foralli € {1,2,--- ,N}, S; : H — H, is a finite family of p-demimetric operators with p €
(=o0, 1), such that I — S; is demiclosed at zero.

(7) The solution set Q = (VI(K, B) ﬂfil F(S,-))HF #0,wherel' ={se€ K:se€ EP(F,¢1) and As €

EP(F3, ¢,)}.

Condition B. Suppose that {a,,}, (¥}, B}, {€n} and {n,,} are positive sequences such that

(]) {wm}’ {am} C (0’ 1)» {nm}, {ﬁm} C [a, b] - (09 1), lirnm—)oo ay, = 0, such that ay +ﬁm + N = 1 and
Dy @y = 00, limm_m;—’” = 0., where {€,} is a positive sequence.
(2)0<wu<1=p, A >0,7,4€(0,1)0<68, <6, <6,<6, <1

Now, we propose iterative Algorithm 3.1.

Algorithm 3.1. Initialization Step. Take sy, s| € Hy, given the iterates s,,_, and s,, for all m € N.

min {86, —=2—\,  if S # Sm_1,

’ ”Sm_smfl ”}

>
3
I

3.1

0, otherwise.

min {0, —=—14  if s # St

> Nsm=Sm-1ll}

O = (3.2)

0, otherwise.
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10424

Step 1. Compute

Im = Sy + (1 - a’m)(sm + 5111(sm - Sm—l))’ (33)
W = l;bmsm + (1 - wm)(sm + Hm(sm - Sm—l))a (34)

Ym = T;E:hm)(wm + YmA*(T£:2’¢2) - I)Awm)a

where
T — DAW, P
m € (6, Ty - e). 3.5)
A*(T;, > = DAw,,|I?
Step 2. Compute
Uy = PKm(ym - ﬂmBym)a
Vi = (1 = )y + T, + 7A0(By,, — Buy,),
where
Ky ={s € H, |qOm) +{q'Om)s s = ym) <0}
and
min sl —timl sAm s i lIBym — Bunll> + g’ 5m) — ¢’ ()| # 0,
Aps1 = { ViIByn—ButnlP+g’ ) =4 )| FlIBy I+ 1lg"0m) = ¢ )l (3.6)
Ao otherwise.
Step 3. Compute
Sm+1 = a'mf(zm) +ﬁmvm + nmsmvm’ (37)

where S, := zlv Zﬁal (1 — w)I + wy,S)).

Remark 3.1. We note that S, := ﬁ SNHA = ) + S ) is quasi-nonexpansive mapping. To see

this, let p € Q, and using Lemma 2.6, we have

1 N-1
1S s = pll = Nl (1= )] + YiuS )s = pl
i=0
1 N-1
<~ 2 I =)l + S )s = pll
i=0
N-1

<< D ls=nl
N i=0
= lls = pll. (3.8)

Thus, T,, is quasi-nonexpansive.
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Lemma 3.1. The step size {y,,} defined by (3.5) is well-defined.

Proof. Assume p € T, then Ap € (T\>??), since (T\>”) is firmly nonexpansive and F(T\ >%) # 0.
Using (2.9), we obtain

IA* (T2 = DAWllw,, = pll = (A* (TS = DAW,, w,, = p)

= (T 7 — DAW,, Ay, — Ap)
> (T8 — DA, (3.9)

Since T\ Aw,, # Awy, (T — DAW,|l > 0, then |[w,, — pllIA*(T > — DAw,|| > 0, hence,

m m

IA*(T">% = I)Aw,|| # 0. Thus, v,, is well defined. O

Lemma 3.2. Suppose {s,} is a sequence generated by Algorithm 3.1. Under Assumption 3.1, {s,} is
bounded.

Proof. Let p € Q. Using (3.3) and the fact that 0 < 6,, < 6,,, we have
Qm”sm - Sm—l” < ém”sm - sm—l” < €m-

Therefore, it follows from lim,, ., = = 0, that

0}71 . m
Hm I, — sl < lim <% = 0. (3.10)

m—oo Iy, m—oo Y,

It follows that the sequence {%Ilsm — s,»—1/|} 1s bounded. Hence, there exists N, > 0 such that %Ilsm -
Sm-1]| £ N, for all m € N. By Algorithm 3.1, we have

“Wm - P|| = ”l//msm + (1 - wm)(sm + em(sm - Sm—l)) - P||
S Yallsm = pll+ (1 = llsm = pll + Ol = Yi)llSm — Sm-1ll
< ”Sm - P” + Hmllsm - Sm—l”
Om
= ”Sm - P|| + am_llsm - sm—l”
ay
< |lsm = pll + @niV>. 3.11)
Using a similar argument as in (3.11), we have
||Zm - P” = ”a/msm + (1 - a'm)(sm + 5m(sm - Sm—l)) - PH

< apllsm — pll + (1 = a)llsy = pll + 6,(1 — @)llsm — Sm—1ll
< ”Sm - P” + 6mllsm - Sm—l”

Om
= |lsm — pll + @n—IlSm — Sp-1ll

U

< |lsm = pll + @nNy. (3.12)

Also, using the fact that Tf:] 41 Tf,?’m) is firmly nonexpansive, (2.2), F (Tf:z’m)) # 0, (2.9), and the
step size of y,, in (3.5), we have

Iy = PIP < NTE>0 0wy, + ¥ AY(TP) = DAW,,] = T p|?
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< Wi + YA (T = DAw,, — plf?

= lwi = pIIF + Yo lA (T2 = DAWIP + 27wy = p, A (T} % = DAW,,)
= [ = pIP + V2l A (T2 = DAWIE + 27(AWn = p), (T = DAW,,)

< lwm = pIP + VAT — DAW,,IP = yull(T11>% = DA,
= Wi = pIF = Y (T3> = DAWRIP = yullA*(T02% = DAW,IP)
< lw = I = ymell A" (1125 = DAw, |

< W = pIP*.
This implies

ym = Pl < llww = pll.

(3.13)

(3.14)

Furthermore, since, u,, = Pk, (Y — AnByn), and using the characteristics of the metric projection, we

have
m = AnBYm = tm, tty = p) 2 0,
that is
2V = Uy Uy — P) — 24, By, — By, yy — p) — 24,,{ By, u, — p) = 0.
Now, observe that
200 = Uyt = PY = Wy = PIF = 1y = thll® = Nt = pIP,

thus, we have that (3.16) becomes

1V = PIF = 1m = thll* = Nt = PI* = 22, BV = Bl thyy — P = 22, Btty, hy, — p) > 0.

In addition, using the fact that B is monotone. It is easy to see that

(Bu,u,, — p) = (Bu,, — Bp,u,, — p) + (Bp,u,, — p) > (Bp, u,, — p).

Thus, (3.18) becomes

||um - p”2 < “ym - P||2 - “ym - umllz - 2/lm<Bym - Burm Un — P> + 2/1m<BP,P - um)-

Additionally, using Algorithm 3.1 and (3.20), we get

i = pII?

= [I(1 = 7)Y + Ttt + TAu(Bym — Buy) — pl’

= I(1 = D)Gm = p) + Tty = P) + TAn(By — Bu)|

= (1 = 1llym — pIF + Tllttw — pI* + T° 1By — Bull®
+27(1 = )XY = st — p) + 24, 7(1 = T)ym — p, Byn — Bu,)
+ 2,7y, — p, By, — Buy)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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= (1 = llym = pIF + Tllt = pIF + T l1BYw — Buyll* + 7(1 = D)lllym — pIP

+ et = PIP = Vi = wnl’] + 22,71 = TV = Py By — But)

+ 22,7ty — P, By — Bity,)

= (1 = Dllym = pIP + Tty — pIF + T 1By — Bull” = (1 = Dllym — il

+ 24, 7(1 = T)ym — p, By, — Bu,,) + 2/1m72(um - p, By, — Bu,,)

< (1 =Dllym = pIF + 7lllym = PIF = 1Vm = thnl* = 2250(BYss = Bty s = p) + 22,,(Bp, p = )]

+ T ||Bym — Butyll* = T(1 = Dllym — tll®

+22,,7(1 = )y, — p, By — Bup,) + 24,7ty — p, By,y — Bu,,)

= llym = pIP =72 = Dllym — > + T ||Bym = Bua|* + 22,,7(1 = 7)Y = thn, By — Bity)

+ 20, T(Bp, p — tly,). (3.21)

To conclude the estimation for (3.21), we need to consider two cases: Case I, when Bp # 0, and
Case II, when Bp = 0.

For Case I (Bp # 0), we have p € dK, and there exists [ > O such that Bp = —Iq¢’(p). Note that
q(p) = O since p € dK. Using (2.12), we have

-1
qun) = q(p) +{q'(p), u — p) = 7<Bp, Un = D),

that is
—(Bp, tty = p) = (Bp, p — ) < lq(uy). (3.22)
Since, u,, € K,,, we obtain
qOm) +4q' Ym)s thm = ym) < 0. (3.23)
Also, using (2.12), we have
q(um) + g’ W), Ym = tm) = g(ym) < 0. (3.24)
Adding (3.23) and (3.24), we get
q(un) <G ) = §' Gm)s ty = Ym)- (3.25)
Thus, (3.22) becomes
(Bp, p = um) < lqQu) < Kq' ) = g Gm)s thm = Ym)- (3.26)

Thus, we have that (3.21) becomes

”Vm - P||2 < ”ym - P”Z - T(2 - T)”ym - um”z + 7'2/151||B)7m - Bl'th2 + 2/1mT(1 - T)(ym - um’Bym - Bum)

+ Z/ImTKq,(um) - q’@m), Up — ym>
< lym = PIF =72 = Ollym = tnl® + TA1Bys = Bull* + 22, 7(1 = )V = thyns By — Bt

+ 4 7lg () = ¢ Gl + Lllity, = yall
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= ”ym - P||2 - T(2 - T)”ym - umllz + Tﬂyzn[”q,(um) - q,(ym)”z + ”Bym - Bumllz]
+ 2/1mT(1 - T)(ym — Up, Bym - Bum> + lzT””m - ym”2

/12 2
< ym = PIP = 72 = Dllym — tnll* + 72— [&
/lm+1
+ 22, 7(1 = Oy = tnllll By — Butyall + Pllity, — youll*. (3.27)
It is easy to see from (3.6) that
/1%1+1||B)’m - Bumll2 < /12||ym - umllz - /liﬁ.l”q,(um) - q’(ym)llz < /12||ym - umllz (328)
Thus, we have
1By — Bityll < <21y = . (3.29)
m+1

Therefore, (3.27) becomes

2,2
2
i =

A
Vi = PIF < 1w = PIF =72 = Oy — tnll* + 7

/lzwl
u
+ 24, 7(1 - T)/l_“ym = tll® + Plltt, = yull?
m+1
ﬂmu
=llyw—pIP—7|2-7- -2(1 _T)'u/l _ZZ:IHym_um”z- (3.30)
m+1 m+1

Using the fact that lim,, o 4, = A1 > 0,1, [, 7 € (0, 1), we have lim,,, 7[2 T— ”’” -2(1- T),u
lz] =T

21— =21 - Ty — 12] > 0. Thus, we have that (3.30) becomes

Vi = Pl < llym = PII. (3.3D
For Case II (Bp = 0), using a similar approach as in Case I, we have

”Vm - P||2 < ”ym - P||2 - T(2 - T)”ym - umllz + Tz/li”Bym - Bum”2 + 211117-(1 - T)(ym - umaBym - Bum)

A’ o
< ”ym - p”2 - T(2 - T)”ym - um”2 +7T > ”ym - um||2 + 2/]va(l - T) ||ym - um”2
/lm+1 /lm+1
A2 A
=llyw—plIF —7|2-7- =5 —2(1—T),u/1 1y = tll?
m+1 m+1
< Ilym — pIP. (3.32)
Thus, we have that (3.32) becomes
Vi = Pl < llym — pII- (3.33)

Finally, using Algorithm 3.1, (3.11)—(3.13) and (3.33), we get
||Sm+1 - P” = ||a/mf(zm) +ﬁmvm + nmvam - P”
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= llem(f(zm) = P) + Bu(Win = ) + 1u(S mVim = P

< @ullf @m) = FDI + @nllf(P) = pll+ Bullvm = pll + 1llS mvim = i
< @nkllzm = pll + @l f(p) = Pl + Bullvi =PIl + 1llvin = Pl

< apkllzm = pll + anllf(p) = pll + (1 = @w)llvm — pli

< @pkllsm = pll + @wN1 + aullf(p) = pll + (1 = aw)llsm = pll + @nlN2
= (I = an( = )lsm = pll + awN3 + aull f(p) = pll

N; +11f(p) — pll
< (1 = a1 = D)lIsn — pll + (1 — k)= (1f—(l;<)) ?
N- —
Smax{llsm—pll, 3 +If(p) pll}
1-k
<
N; +1If(p) — pll
< max {llso - pll, = lffi Z (3.34)
where N3 = N; + N,. Thus, {s,,} is bounded. O

Lemma 3.3. Let {s,} be the sequence generated by iterative Algorithm 3.1 under Assumption 3.1.
Suppose that the subsequence {s,, } of {sm} converges weakly to a point s*, and I}im [t = Y, ll = 0 =

]}im [V, = W ll, then, s* € VI(K,A) and As™ € EP(F,, ¢»).
Proof. Let {s,, } be a subsequence of {s,,} which converges weakly to s* € H;. It is easy to see that

. . m
]}Hn ”ka - Smk” < lim Ay _kllsmk - Smk—IH =0. (335)
—00 k— o0 a'mk

Using the hypothesis in the lemma, we get
me = Smll < AYme = W[l + (Wi, = S, [l = 0 as k — oo. (3.36)

Since A is a bounded linear operator, it follows from (3.35) that {Aw,, } converges weakly to As*. Also,
by (3.36), we have that y,, converges weakly to s*. Thus, we have

letm, = Smll < e, = Yl + 11y, = S, [l = 0 as k — oo. (3.37)
From (3.13), we have

1y = PIP < Wi, = PIP = Vsl AT 2% = DAW,, |1
< Wi, = pIF = EIA°T, 2% = DAW,, I, (3.38)

which implies that

201 A * Fa, 2 2 2 2
&€ ”A (Tr(mkz ) I)Awmkll < ”ka - P” - ”ymk - P” < ”ka _ymk” + 2||ymk - P||||ka —)’mk”,
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therefore, we have
klim ||A*(Tfrsz"”2 - DAw,, || = 0. (3.39)
In addition, from (3.13)

e = PIP < Wi, = PIP = Y ITST2P = DAW, [P + 95, IAT(T,2 = DAW,,, I

rmk

< (W, = pIP* = 8||(Tf,‘;2’¢2) — DAw,|I* + V,Z,lkllA*(Tf,ff’m) — DAwy, I, (3.40)
which implies that

ell (T3 2% = DBWI* < Wi, = PIP = lym, = PIP + ¥ IAT(T3 2% = DAW,,, I

< (W, = Yl + W, = PID* = e = PIP + ¥, AT = DAW,, |1
< AW = Yo + 21y, = PUIWm, = Y|l + VoA (T2 = DA, P, (3.41)

Ting
thus, we have
lim (T3 % = DAW,, || = 0. (3.42)
Using the demiclosedness principle and (3.42), we have
As* e F(Tf22’¢2)) = As* € EP(F,, $»). (3.43)

Since, the subsequence {y,, } of {y,} is weakly convergent to a point s, it follows from (3.37) that u,,,
converges to s*. Also, since u,, € K, and using the definition of K,,, we obtain

q(ymk) + <q,(ymk), Up, — ymk> < 0. (344)
Using the Cauchy Schwartz inequality, we obtain
qm) < NG O, = Y, . (3.45)

Furthermore, since ¢’(.) is Lipschitz continuous, we have that, it is bounded on any subset of H;. Thus,
using the boundedness of {y,,}, there exists a constant N > O such that

g’ Gmll < N,
for all k € N. Consequently, (3.45) becomes
qOm) < Nl = Y I, (3.46)
and using our hypothesis, we obtain
131_210 qm) = 0. (3.47)
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In addition, using the fact that g is weakly lower semicontinuous, we obtain g(s*)< lim inf;_,. g(yy, )<O0.
This implies that s* € K. Since u,,, = P (Y, —Am, BYym,), from the characteristic of the metric projection,
we have

Ome = A BYmy — s S — Uy, ) 0V s € K C K. (3.48)
Using the fact that B is monotone, we have

0 < U, = Yo S = Upy) + A ABYmy» S — Upy)
= (U = Yig> $ = Umy) + A {BYmys § = Ym) + A BYmy> Y = Umy)
= (U, = Yms S — U) + A (BS, 8 = Yim) + Ay BV, — BS, S — V) + A ABYme> Yy — Uy
< Uy = Yimgs S — Umy) + A (BS, S = Vi) + Ay (BYys Vi, — Uy )

and using our hypothesis and the fact that limy_,, 4,,, > 0, we have
(Bs,s —s") > 0.

Using Lemma 2.1, we obtain s* € VI(B, K). m]

Theorem 3.1. If {s,,} is a sequence generated by Algorithm 3.1. Then, under the Assumption 3.1, {s,,}
converges strongly to p € Q.

Proof. Let p € Q, and using Algorithm 3.1 and (2.4), we get

Iz = PIP = ll@msm + (1 = @) (S + (S = Sm—1)) = plI°
= ll@m(sm — P) + (1 = @)( S + 6(S = Sm-1) — P
< @llsm = pIF + (1= @)ll(S = p) + (S — Sm_nII?
< yllsm = pIF + (1= @lism = PIF + Spllsm = Sm-tll” + 26,{Sim = Py Sm = Sm-1)
< @ullsm = pIF + (1= @)llsm — pIF + ollsm — Smetl* + 26,ll5m — PllllSm = Sl
= llsm = PIP + Sullsm = SmctNSmllSin = Smtll + 215, — plI]
< s = pI* + Sllsim = Sm-1lINs, (3.49)

where Ny = sup,, i 2lls, — pll, Omllsm — sm-1ll}. Using a similar arguement as in (3.49), we have

”Wm - p||2 < ”Sm - P||2 + 5mllsm - sm—l”[em”sm - Sm—l” + zllsm - p”]
< ”sm - P||2 + Hmllsm - Sm—1||N57 (350)

where Ns = sup,, {2l = pll, Onllsm — Sm-1ll}.
In addition, we obtain

lsms1 — plI?

= NS @m) + BV + TS mVm — PII

= lln(f @m) = F(P)) + B = P) + (S Vi — P) + au(f(p) — P

< ln(fG@m) = F(P) + BuOim = P) + (S Vi = P + 22(f(P) = P. Sme1 — P)
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< @ullf @) = FPIF + Bullvin = PIF + 1allS wvin = pIF + 200 (f(P) = Py Sm1 — P)
< @kl = PIF + Bullvie = pIF + Buallvin = pIF + 22,(f(P) = P, Se1 — P)
< @kllzn = pIF + (1 = @)V = pIP + 2, f(P) = P, Sms1 — P)
< @ukllIs = PIP + Sullsi = Sm1lINa] + (1 = @)llym — PIP + 20{f(P) = P, Sms1 — P)
< @kllIsm = PP + Sullsm = Sm-1lINa] + (1 = @)W — I + 22,(f(P) = P Sms1 — P)
< @ukllsm = PIP + Sullsm = Sm-tliNa + (1 = @)lllsm = PIF + Oullsin — Sm1lNs] + 200 (f(P) = P, St — P)
OmllSm — Sm—111N4 N OnllSm — Sm-1INs N

an(l — k) an(l — k) (1 —k)

< (1= an(l = kDllsw = pli* + (1 = k) (f(P) = P> Sme1 = P)

= (1 = an(l = k)llsw — pIF + (1l = k)W, (3.51)
where ¥,, = ’"”fy";(f’"kl)”N“ + 9’"”2’;(15'"](1)”% = k)(f(p) Py Sme1 — DY|- According to Lemma 2.5, to

conclude our proof, it is sufficient to establish that lim sup,_, , *¥,,, < O for every subsequence {||s,, —pll}
of {||s,, — pll} satisfying the condition:

im inf{{|sy,+1 = pll = llsm, = pll} 2 0. (3.52)
From (3.32), (3.49) and (3.51), we get

||Smk+1 - p||2
< Wl = PIF + (1 = @u)lVi, = PIP + 200, f () = P, Smpe1 — P)

< @[S, = PIP + SISy = St IN2] + (1 = @)Wy, — pII
2 2

At 2 2
_7[2_7_ _2(1 _T)/l/l | -1 ]”ymk umk” ] +20’mk<f(]7)—]7, Sm+1 —P>
my+1 my+
< amkllsmk - P||2 + 5mkllsmk - Smk—lllN4 + (1 - a’mk)[llsmk - P||2 + Hmkllsmk - Smk—lllNS]
/lmkl‘l

(- %)r[z TSR -2l )u/l l—zz]nymk—umkn 20 (F(P) = Ps Smst — D)
my+

mi+1

2
< a’mkllsmk - P” + 5mkllsmk - Smk—1||N4 + Hmk”smk - Smk—IHNS

/lmk/’l

—-2(1 - T)/l/l - lz]llymk | + 20, (f(P) = Py St = P), (3.53)

mK+1

—(- a/mk)‘r[Z -

mk+l

which implies that

2,2

: mH A 2 2
tim sup (1 = @72 = 7= 2 = 201 = D= = By, - nF)
k—00 i+l /1mk+l
. 2 ka 5mk
< lim sup ”Smk - p” + a’mk_llsmk - Smk—l”NS + a’mk_”Smk - smk—1||N4
k—o00 amk amk

£ 2am (F(P) = Py $met = P) = lsmert — p||2]
<~ liminflllsyer = pIF ~ llsn, — pIF] < 0.

AIMS Mathematics Volume 9, Issue 4, 10416-10445.



10433

Thus, we have
Lim [y, = ]| = 0. (3.54)
Using Algorithm 3.1 and Step 2, we get

”mG - ymk” = ”(1 - T)(ymk - ymk) + 7-(umk - ymk) + T/lmk(Bymk - Bumk)”
< T”umk - ymk” + T/lmk”Bymk - Bumk”

TAm M
< T”umk _ymk” + 1 . ”ymk - umk||~
my+1
Thus, we have
lim [V, = Y| = . (3.55)
Also, using (3.54) and (3.55), we obtain
B [ty = Vil < T it = Y|+ 1im [, = Vi ] = . (3.56)

From (3.13), (3.49), and (3.51), we get

$mee1 =PI

< Wikl = PIP + SIS, = St IN&] + (1 = @)y — PIF + 22, f(P) = P, Sms1 — P)

< @IS = PIP + S llSm, = Sme—1lINs + (1 = @)W, — pIIF = 82||A*(T£,fj"”” — DAW,,IIP]

+ 20, (f(P) = P> Smy+1 — P)

= WllSm, = PIP + SIS, = St INg + (1 = @)llwim, — plI> = (1 = amk)szllA*(T,(,fj"”” = DAw,, P
+ 20, (f(P) = Py Smr1 = P)

< @IS, = PIP + SIS, = Sme—1INg + (1 = @) NS, = PIF + OIS, = Sa—11IN5]

+2-(1- amk)ezllA*(Tf,fj"’m — DAW P + @ (D) = Py St — P)

< Nisme = PIP + SIS, = St N4 + Ouall S, = St INs — (1 = am)szllA*(Tﬁfj"”” - DAw,, I

+ 20, (f(P) = P> Sm+1 = D)5 (3.57)

which implies that

lim sup ((1 — @ )E AT (T} 2% — I)Awmkllz)

k—oo

< lim sup

k— o0

0
2 m m
”Smk - p” + a’mk_kllsmk - Smk—IHNS + a’mk_k”smk - Smk—1||N4
Ay, Ay,

+2%¢ﬂm—pﬁmﬂ—p>—mmﬂ—mﬂ

< —liminfflism,. - PIF = lism, = pIP1 < 0.

Thus, we have

lim IA(TS 2% = DA, || = 0. (3.58)
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Using (3.9), (3.58) and the boundedness of {w,,}, we obtain

gmuKﬂQM%—nAwmn:o. (3.59)
In addition, using Algorithm 3.1 and (2.5), we have

lI$ms1 = pIP

= ln(f@n) = P) + BuWim = P) + (S Vi = P

< @l f @) = PIP + Bullvn = I + 1llS wv = PIF = BttllVin = S mvil

< @ulllf @) = FON+1F () = PP + (1 = @)lve = pIF = Buttalvin = S mvmll?

< alkllzn = pll + 1f(p) = pII* + (1 = @llvm = PIF = ButtmllVi = S vl

< aulkllzm = PIF + 1f(P) = pIP* + 2KIf(p) = Plllzw = PIT + (1 = @)W = PIF = BtV = S mvl?
< @llzn = pIF + @ull f(p) = pIP + 2ka,llf(p) = pllllzn = pll + (1 = @)lWn = PIF = Buttullvm = S vl
< @lllsm = PIP + Sullsm = Su1INa] + @l f(p) = pIP + 2kenllf (p) = plllizm = plI

+ (1= a)lllsm = PIF + Oullsi = s lINs] = Buttllvin = S mvll®

< llsm = PIP + @nSullsm = sm-rllNa + @ullf(p) = pI* + 2kanllf(p) = plllzw = pll

+ Onlls = Sm-1lIN5 = ButlallVin = S vl (3.60)

which implies
hl'kn sup (ﬁmknmk ||vmk - Smk mG”z)

0
2 m
”Smk - P” + Ay - ”smk - smk—1||N5
My

< lim sup

k—o0
+ amkémk”smk - Smk—l||N4 + amk”f(p) - p||2 + 2ka’mk||f(p) - p””ka - P” - ||smk+1 - p”2

. . 2 2
< _hilllnf[llsmkﬂ = pl" = lsm, — plI]1 £ 0.

Thus, we have

1im 1V, = S il = 0. (3.61)

Now, using the fact that T,(,fl ) is firmly nonexpansive, we get

llym =PI
= T3 0w + YA (T2 = DAW,] = plf?

— ”T}Ejl,(ﬁl)[wm + )/mA*(Tg:Z"bZ) - DAw,,] — T£51,¢1)p||2
SO —PsWh + ymA*(Tﬁfz"”Z) - DAw,,)

1 . x
= 5llym = PIP + 1wy + YA (T = DAW, = pIP = llym = p = W + YA (T = DA, = p)IF]

1
= E[Hym - P”Z + ||Wm -p + 7mA*(T£:2v¢2) - I)A"Vm”2 - ”ym —Wn — ’ymA*(T;E,fLM) - I)Awm”z]
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Ul = PP + 11w = IP + Vo llA (T35 = DAW| + 2wy = p, YA (TS = DAW,,)

1
2
- ||ym - Wm” - Ym”A*(T;E,fz’(pz) - I)A"Vm”2 + 2<ym - Wi, YmA*(Tﬁ,fz’(ﬁZ) - I)Awm>]

= %[nym = pIP + 1w = pIP = 1y = Wanll + 2 = P, VA" (T = DAW,)], (3.62)
which implies that
1y = PIP < Wi = PIP = 1y = Waall + 20m = P YA (TP = DAW,). (3.63)
Furthermore, using (3.63), we get

$me1 — I

< Apllls = pIF + 8ullsm = Sm-tlINa] + (1 = @)llym — pI* + 20, f(P) = Ps Sms1 — D)

< @ulllsm = PIP + Sullsm = suotlNa] + (1 = @)Wy = PIF = 1y — Wil

+ 200 = Py YA (T = DAW,)] + 20, (f(P) = P. St — P)

< @ullsm = PIP + Sullsm = St lINs + (1 = @)llsm = PIP + Gullsm = Sm-1lINs = (1 = @u)llym — Wil

+ 200m = P YA (T2 — DA, + 20, f(P) = Py Sms1 — D)

< lsw = PIP + Sullsm = SuctlINg + Gl — St lINs = (1 = @) llym — Wl

+ 2 ullym — PINIA T = DAW,|| + 200 f(P) = P, Sms1 — P)» (3.64)

which implies that

lim sup ((1 = A Y, — ka”)

k—o0

6 0
2 m, m
||Smk - P” + a’mk_kllsmk - Smk—IHNS + a'mk_kllsmk - smk—1||N4 + 20lm<f(]9) — P> Smy+1 — P)
Ay Ay

< lim sup

k—o0
+ 2Y i [V, — PllllA*(Tf,sz’d’Z) — DAW |l = ISe1 — pIP

< —liminf{llsy,. - P = lism, = pIP1 < 0.

We get
im [[y,, = wi | = 0. (3.65)
Using Algorithm 3.1, we have
lim ||z, = Sp, |l < lim @, - %Hsmk — Sm—1ll = 0, (3.66)
k=00 k—c0 U,
and
B 0, = ) < Jim @ = =I5, = sl = 0. (3.67)

my
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Using (3.54), (3.61), and (3.65)—(3.67), we get

1m |y, = Smdl < m [[y,, — wp |l + im Wy, — s, |l = 0, (3.68)
k— o0 k—o0 k—o0
lim (|t — S|l < 1im [ty = Y |l + i ||y, = 5,11 = O, (3.69)
k— o0 k— oo k—oco
1im [V, = Sl < im [|vyy, = Y |l + M [y, = Sl = O, (3.70)
k— 00 k—o00 k—o0

lim ||Smk+1 - mG” < lim a’mk”f(zmk) - vmk” + hmﬁmkllvmk - vmk” + lim nmkllsmkvmk - vmk” = O, (371)
k—o0 k— o0 k—o00 k—oco

B (1501 = S| < T 155001 = Vo1 Tim [y, = s} = 0. (3.72)
k—o0 k— o0 k—o0

Now, since {s,, } is bounded, there exists a subsequence {smkj} of {s,, } such that {smk/_} converges weakly

to s* € H,. From (3.69), it follows that {umkj} converges weakly to s*. We now establish that s* €
EP(F,, ¢;). Using the definition of y,, = T ’¢1)[ka + 7mkA*(T(F2’¢2) - Aw,, ], we have

Ty, Ty,

1 ;

Fl(ymk’y) + ¢1(Y’)’mk) - ¢l(ymk7ymk) + r_<y = Yms Yy — Wiy + ’)/mA (T;g,i;z’(ﬁz) - I)Awmk> > 0O Vv y € K.
my

Using Assumption 2.1(2) (using monotonocity of F), we have

1 *
¢1(y,)’mk) - ¢1()’mk’)’mk) + _<y = Y Ymy — Wy + ’YmkA (T;Erf:’(pZ) - I)Awmk> > Fl(y,)’mk) v ye K’

.

ymk - ka - ’)/mA*(TﬁFz’qu) - I)Awmk

My

Fi(m,y) < 0100, Ym) — 01O Ymy) + <y — Yimgs > VyeK. (3.73)

I

Forany 0 <7 < 1andy € K, suppose that y, = ty + (1 — )s™. It is easy to see that y, € K, since y € K
and s* € K; thus, y, € K. By (3.73), we have

x  (F2,02)
Yo = Wiy — ’)/mkA (Tr,nk2 27— I)Awmk>

Vi

0 < F1(mes 1) = 100 Yme) + 31 G Ye) — (y, s V yek.

k

(3.74)
Using the fact that lim inf;_,o, 7, > 0, (3.65) and (3.58), we have
P11, 87) — 1(s™, 57) < Fi(s7, y1).
Fort > 0,

0=FQn,y) =tF(y,y) + 1 =0F(@y;,s")
> tF(y;,y) + (1 = D[p10vr, 87) — 157, 57)]
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> tF(y,y) + (1 = t[¢1(y, x7) — ¢1 (5", s9)]
> tF(y,y) + (1 = D[y, 5*) — ¢1(s", s9)]. (3.75)

Taking t — oo, we have

$1(y, 5) = di(s*, s+ Fi(s,y) >0 VyeK.

Thus, we have s* € EP(Fy,¢;). Additionally, since A is a bounded linear operator Aw,, — As",
suppose that
. = AWy = T30 2% Awy.

It follows from (3.59) that liminf}_,., d,, = 0 and Aw,,, — d,, = T,(,Sf’m)Awmk. Using Lemma 2.4, we
have

1
FZ(Aka - dmkay) + ¢2(y,ymk) - ¢1(ymkvymk) + _<y - (Awmk - dmk)’ (Awmk - dmk’Awmk)> > 0’ Vy € Q

my

Since F’, is upper semi-continuous in the first argument, taking limit superior of the above inequality
as k — oo and using the condition, we get

Fy(As™,y) + ¢2(y,57) — ¢1(s", s*) > 0. (3.76)
Hence, we obtain that As* € EP(F,, ¢,). Furthermore, since p is a solution of Q, we get

limsup(f(p) = p, $m, = p) = limsup(f(p) = p, sw,, — p) = (f(p) = p.s" = p) <0, (3.77)

k—oo Jjooo

Using (3.72) and (3.77), we have

lim sup(f(p) = p, Sm+1 — P)

k—o0
= lim sup(f(p) — p, Sme+1 — Sm,) + limsup(f(p) — p, S, — D)
k— o0 k— o0
=(f(p)—p,s" —p)<0, (3.78)

which implies that

lim sup(f(p) — p, sm+1 = p) < 0. (3.79)

k—o0
Using our Assumption 3.1 and the above inequality, we have that

6m||sm - Sm—l||N4 gm”Sm - Sm—l”NS + 2

li ¥, =1 + — D, Smal — <0.
Ml e S P - -k (=P P )
Thus, by Lemma 2.5, we have lim ||s,, — p|| = 0. Thus, {s,,} converges strongly to p € Q. O

From our main results, the following corollaries follow immediately:

Corollary 3.1. Suppose Assumption 3.1 holds, where ¢, and ¢, are identity mapping. The sequence
{s,} is the sequence defined by Algorithm 3.2.
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Algorithm 3.2. Initialization Step. Take sy, s1 € Hy, given the iterates s,,_, and s,, for all m € N.

. . .
min {6, =}, if S # Swe1s

Opm =
0, otherwise.
. . .
[ mindl ) i e # S
6, =
0, otherwise.

Step 1. Compute
Im = Sy + (1 - a’m)(sm + 6m(sm - Sm—l))’
Wi = wmsm + (1 - wm)(sm + Hm(sm - Sm—l))a
Y = TL Wi + YA (T2 = DAw,,),

where

(T = DAw,|I?
n e (67 F - 6).
|A*(T> — DAw,|]?

Step 2. Compute

Uy = PKm(ym - /lmBym)’
Vi = (1 =)y, + U, + 74,,(By,, — Bu,,),

where
Km = {S € 7_{1 | Q(ym) + (q'()’m), s — ym> < 0}
and
min ] A i 1BYw = Buyl +11g Om) — ¢ wa)* # 0,
/lm+] = {\/”Bym_Bum||2+||q,(ym)_q,(um)”2 f” y || ||q ()) ) q ( )”
Ay otherwise.

Step 3. Compute
Sm+1 = a'mf(zm) +ﬁmvm + nmsmvm,

where S, := + TV (1 = w)] + w,S).

(3.80)

(3.81)

(3.82)
(3.83)

(3.84)

(3.85)

(3.86)

Then, {s,,} converges strongly to p € Q.

Corollary 3.2. Suppose Assumption 3.1 holds and {s,} is the sequence defined by Algorithm 3.3.
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Algorithm 3.3.

: o .
min {6, =0l i S # S

S = (3.87)
0, otherwise.
_ min {6, o=Smh i Sw # S,
6,, = (3.88)
0, otherwise.
Step 1. Compute
Im = Sm + 6m(sm - Sm—l), (389)
Wy = S+ Qm(sm - Sm—l)’ (390)
Ym = T,Ejl,¢l)(wm + YI11A*(T£52,¢2) - I)Awm),
where
(T3> = DAw,|P
we (et ~e) (3.91)
NA*(T;, > = DAw,|?
Step 2. Compute
Uy = PKm(ym - ﬂmBym)’
Vm = (1 - T)ym + Tl + T/lm(Bym - Bum)»
where
Py ={s € H | qym) +{q' Om)» S — Ym) < 0}
and
min Allym —umll a/lm , if||B m_B - 2+ ’ ) — / - 2 ?EO,
Aps1 = {\/nBym—Bum||2+||q'<ym)—q'<um>||2 By nll” + g’ Om) = ¢’ () (3.92)
A, otherwise.
Step 3. Compute
Smr1 = U f (Zm) + BV + NS mVims (3.93)
where S, := + TV (1 — w)] + w,S).
Then, {s,} converges strongly to p € (VI(K, B) nX, F(S,-)), where T . p €

EP(F,) and Ap € EP(F»)}.
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Corollary 3.3. Suppose Assumption 3.1 holds and {s,,} is the sequence defined by Algorithm 3.4.

Algorithm 3.4. Initialization Step: Take sy, 51 € Hy, given the iterates s,,_, and s,, for all m € N.

min {0 o }a l:me * Sm—15

> Nsm=Sm-1ll}

0, otherwise.
Step 1. Compute

Wi = Sy + Gm(sm - sm—l)a

Y = T W + yA™ (T3 2% = DAW,),

where

. (E 75 = DAw,ll? 6)
T\ 1A - DAw,IP

Step 2. Compute

um = Pl(m(ym - /lmBym)’
Vi = (1 - T)ym + TU,y, + T/lm(Bym - Bl/lm),

where
Ky ={s € H, | qOm) +{q'Om)s s = ym) < 0}
and
min vt A if 1BYm = Buyl +1lg Om) — ¢ wa)* # 0,
/lm+1 = { \/l|Bym_B”m”2+”q,(ym)_q,(um)”2 f” y || ||q (y ) q ( )”

s otherwise.
Step 3. Compute
Sm+1 = amf(sm) +ﬁmvm + nmS Vi,

where S is a nonexpansive mapping.

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

Then, {s,,} converges strongly to p € (VI(K, B)ﬂF(S))ﬂF, wherel' ={pe K: pe EP(F,) and Ap €

EP(F>)}.
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4. Numerical example

In this section we provide a numerical example that will be used to test the computational advantage
of our proposed method with some well-known methods in the existing literature.

Example 4.1. Let H; = (R, ||x|,), H, = R, |Is|l,), K = {s e R" : =1 < 5; <5,i=1,---,n} and
Q={seRF:-2<5 <5,i=1,---,n}). Let the bifunctions F|,¢; : R" X R" — R be defined by
Fi(s,y) = ¢1(s,y) = (Ps+ Gy + p,y — s), where p is a vector in R”, P and G are two order m matrices
with G being a symmetric positive semi-definite and G — P is negative semi-definite. Let the bifunctions
Fy, ¢ : RE x R¥ — R be defined by F(s,y) = ¢2(s,y) = h(y) — h(s), where h(s) = 35" Ns + ¢” s, such
that ¢ € R* and N being a symmetric positive definite matrix of order k. Next, we consider the operator
A : RF — RFis defined by a matrix of size k X m. Note that the solution to the GSEP in this case is
s* =0, that is, I = {0}. For more details, see, [24,36] and the references in them.

Now, suppose B : R" — R" is defined by V(s) = Ws+ e, where e e R" and ¥ = JJ' + D+ E, where
E is a n X n diagonal matrix whose diagonal terms are nonnegative (hence V¥ is positive symmetric
definite), D is a n X n skew-symmetric and J is a n X n matrix. Under the feasible set K, it is not hard to
see that the mapping V is monotone and L-Lipschitz continuous with L = |['¥||. For e = 0, the solution
set VI(K, B) = {0}. On the other hand, let S;,u = 5, then it is not hard to see that §; is a finite family of
demimetric mappings. Clearly, the common fixed point of S; is 0, i.e., F(S) = NY, S; = {0}. Hence,
Q= (VI(C, B nY, F(Si)) NI ={0}.

Since the feasible set K is a box in R”, the projection of a point s € R” onto K and can be evaluated
as follows:

Sis if S; € [_1’ 5]9
[PK(S)]i = —1, if 8 < —1,
5, if s; > 5.

Also, since the feasible set Q is a box in R¥, the projection of a point s € R¥ onto Q and can be evaluated
as follows:

s, if s, € [-2,5],
[Po(9)]i = -2, if s <=2,
5 ifs >3,

In this numerical experiment, we compare the computational advantage of Algorithm 3.1 (shortly,
Alg. 3.2), Algorithm 3.3 (shortly, Alg. 3.10) and Algorithm 3.4 (shortly, Alg. 3.13) with Algorithm 3
of Farid et al. [10] (shortly, Alg. 1.10). For Alg. 3.2, Alg. 3.11 and AK Alg. 3.13, we choose the
following parameters: f(s) = 3, €, = m a, = (Zml—ﬂ),ﬁm =1y = %(1 —a,), 0 =038, 0 =0.98,
u=067=04 14 =25,p=0.5and w, = 0.75. FRD Alg. 3.1, we choose a,, = B,, = r,, = 0.5,
D(s) =4, v = i, f(s) = 5 and K, (s) = 5. To obtain the nonempty solution set for the problem and
to reach all steps of the algorithms, we take two vectors r and ¢ to equal zero vectors in R” and R,
respectively. We consider the following cases for parameters n and k: Case 1: (n = 30,k = 10), Case 2:
(n = 60,k = 20), Case 3: (n = 120, k = 40) and Case 4: (n = 240, k = 80). Now, for all algorithms, we
consider the starting point s = (1,1,---,1) € R" and stopping criterion E,, = |[S,s1 — S|l < 107.
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Remark 4.1. It is easy to see from the numerical experiment as presented in Table 1 and Figure 1 that
our proposed iterative method performs better when compared with others.

Table 1. Results of the numerical simulations for different dimensions.

Numerical Results for various cases in Example 4.1

Alg. 3.2 Alg. 3.11 Alg. 3.13 Alg. 1.10
Case Iter CPU time (sec.) Iter CPU time (sec.) Iter CPU time (sec.) Iter CPU time (sec.)
Casel 7 0.0012 12 0.0019 14 0.0035 17 0.0060
Case2 9 0.0014 12 0.0021 15 0.0068 18 0.0198
Case3 8 0.0014 12 0.0027 1 0.0075 19  0.0207
Case4 8 0.0015 13 0.0038 14 0.0108 24 0.0297
) g0 e Agnio
10 —o—Aig31l. | ] 100 —o—Alg3.11. | §
’ ’ ) 6Numbir of itelroations12 “ * ’ ° 6Numer of itL;Lroations12 - * e
Tl ol el

L L L L L L L
0 2 4 6 8 10 12 14
Number of iterations

L L
16 18

20

L L L
10 15 20 25
Number of iterations

Figure 1. Example 4.1, Top Left: Case 1; Top Right: Case 2; Bottom Left: Case 3; Bottom
Right: Case 4. Note that the y-axis is the error.
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5. Conclusions

In this work, we have introduced an efficient iterative method for solving GSEPs, FPPs and VIPs.
The new method is embedded with double inertial extrapolations steps and the viscosity technique,
which speeds up the convergence rate of the proposed method. We used some mild conditions in
obtaining our convergence results. The class of mappings studied in this work is more general than
those studied in several articles in the literature. We used a nontrivial numerical example to show that
our method outperforms some well-known iterative methods with single or no inertial terms.
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