Research article Special Issues

Symmetry reductions and conservation laws of a modified-mixed KdV equation: exploring new interaction solutions

  • Received: 20 December 2023 Revised: 26 February 2024 Accepted: 04 March 2024 Published: 14 March 2024
  • MSC : 35B32, 35C08

  • This article represented the investigation of the modified mixed Korteweg-de Vries equation using different versatile approaches. First, the Lie point symmetry approach was used to determine all possible symmetry generators. With the help of these generators, we reduced the dimension of the proposed equation which leads to the ordinary differential equation. Second, we employed the unified Riccati equation expansion technique to construct the abundance of soliton dynamics. A group of kink solitons and other solitons related to hyperbolic functions were among these solutions. To give the physical meaning of these theoretical results, we plotted these solutions in 3D, contour, and 2D graphs using suitable physical parameters. The comprehend outcomes were reported, which can be useful and beneficial in the future investigation of the studied equation. The results showed that applied techniques are very useful to study the other nonlinear physical problems in nonlinear sciences.

    Citation: Nauman Raza, Maria Luz Gandarias, Ghada Ali Basendwah. Symmetry reductions and conservation laws of a modified-mixed KdV equation: exploring new interaction solutions[J]. AIMS Mathematics, 2024, 9(4): 10289-10303. doi: 10.3934/math.2024503

    Related Papers:

  • This article represented the investigation of the modified mixed Korteweg-de Vries equation using different versatile approaches. First, the Lie point symmetry approach was used to determine all possible symmetry generators. With the help of these generators, we reduced the dimension of the proposed equation which leads to the ordinary differential equation. Second, we employed the unified Riccati equation expansion technique to construct the abundance of soliton dynamics. A group of kink solitons and other solitons related to hyperbolic functions were among these solutions. To give the physical meaning of these theoretical results, we plotted these solutions in 3D, contour, and 2D graphs using suitable physical parameters. The comprehend outcomes were reported, which can be useful and beneficial in the future investigation of the studied equation. The results showed that applied techniques are very useful to study the other nonlinear physical problems in nonlinear sciences.



    加载中


    [1] Z. Lin, J. Wang, W. Wei, Multipoint BVPs for generalized impulsive fractional differential equations, Appl. Math. Comput., 258 (2015), 608–616. https://doi.org/10.1016/j.amc.2014.12.092 doi: 10.1016/j.amc.2014.12.092
    [2] Z. Lin, W. Wei, J. Wang, Existence and stability results for impulsive integro-differential equations, Facta Univ., 29 (2014), 119–130.
    [3] N. Raza, M. H. Rafiq, M. Kaplan, S. Kumar, Y. M. Chu, The unified method for abundant soliton solution of local time fractional nonlinear evolution equations, Results Phys., 22 (2021), 103979. https://doi.org/10.1016/j.rinp.2021.103979 doi: 10.1016/j.rinp.2021.103979
    [4] M. H. Rafiq, A. Jhangeer, N. Raza, The analysis of solitonic, supernonlinear, periodic, quasiperiodic, bifurcation and chaotic patterns of perturbed Gerdjikov-Ivanov model with full nonlinearity, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106818. https://doi.org/10.1016/j.cnsns.2022.106818 doi: 10.1016/j.cnsns.2022.106818
    [5] N. Raza, A. Javid, Optical dark and singular solitons to the Biswas-Milovic equation in nonlinear optics with spatio-temporal dispersion, Optik, 158 (2018), 1049–1057. https://doi.org/10.1016/j.ijleo.2017.12.186 doi: 10.1016/j.ijleo.2017.12.186
    [6] S. Lou, Searching for higher dimensional integrable models from lower ones via Painleve analysis, Phys. Rev. Lett., 80 (1998), 5027. https://doi.org/10.1103/PhysRevLett.80.5027 doi: 10.1103/PhysRevLett.80.5027
    [7] M. B. Hossen, H. O. Roshid, M. Z. Ali, Dynamical structures of exact soliton solutions to Burgers' equation via the bilinear approach, Partial Differ. Equ. Appl. Math., 3 (2021), 100035. https://doi.org/10.1016/j.padiff.2021.100035 doi: 10.1016/j.padiff.2021.100035
    [8] A. Zafar, M. Raheel, M. Mirzazadeh, M. Eslami, Different soliton solutions to the modified equal-width wave equation with Beta-time fractional derivative via two different methods, Rev. Mex. Fis., 68 (2022), 1–14. https://doi.org/10.31349/revmexfis.68.010701 doi: 10.31349/revmexfis.68.010701
    [9] C. M. Khalique, I. Simbanefayi, Exact solutions and conservation laws for the modified equal width-Burgers equation, Open Phys., 16 (2018), 795–800. https://doi.org/10.1515/phys-2018-0099 doi: 10.1515/phys-2018-0099
    [10] R. K. Bhowmik, M. F. Al-Asad, M. R. Karim, Soliton solution of Korteweg-de Vries equation, Int. J. Appl. Math. Stat., 4 (2019), 45–48.
    [11] S. Malik, S. Kumar, A. Das, A (2+1)-dimensional combined KdV-mKdV equation: integrability, stability analysis and soliton solutions, Nonlinear Dyn., 1 (2022), 2689–2701. https://doi.org/10.1007/s11071-021-07075-x doi: 10.1007/s11071-021-07075-x
    [12] S. Naowarat, S. Saifullah, S. Ahmad, M. De la Sen, Periodic, singular and dark solitons of a generalized geophysical KdV equation by using the tanh-coth method, Symmetry, 15 (2023), 135. https://doi.org/10.3390/sym15010135 doi: 10.3390/sym15010135
    [13] G. Wang, T. Xu, Symmetry properties and explicit solutions of the nonlinear time fractional KdV equation, Bound. Value Probl., 2013 (2013), 232. https://doi.org/10.1186/1687-2770-2013-232 doi: 10.1186/1687-2770-2013-232
    [14] G. Wang, A. H. Kara, A (2+1)-dimensional KdV equation and mKdV equation: symmetries, group invariant solutions and conservation laws, Phys. Lett. A, 383 (2019), 728–731. https://doi.org/10.1016/j.physleta.2018.11.040 doi: 10.1016/j.physleta.2018.11.040
    [15] A. A. Elmandouha, A. G. Ibrahim, Bifurcation and travelling wave solutions for a (2+1)-dimensional KdV equation, J. Taibah Univ. Sci., 14 (2020), 139–147. https://doi.org/10.1080/16583655.2019.1709271 doi: 10.1080/16583655.2019.1709271
    [16] A. M. Wazwaz, New Painlevé-integrable (2+1)-and (3+1)-dimensional KdV and mKdV equations, Rom. J. Phys., 65 (2020), 108.
    [17] S. Malik, S. Kumar, A. Das, A (2+1)-dimensional combined KdV-mKdV equation: integrability, stability analysis and soliton solutions, Nonlinear Dyn., 107 (2022), 2689–2701. https://doi.org/10.1007/s11071-021-07075-x doi: 10.1007/s11071-021-07075-x
    [18] S. G. Tagare, A. Chakrabarti, Solution of a generalized Korteweg-de Vries equation, Phys. Fluids, 17 (1974), 1331–1332. https://doi.org/10.1063/1.1694886 doi: 10.1063/1.1694886
    [19] G. C. Das, S. G. Tagare, J. Sarma, Quasipotential analysis for ion-acoustic solitary waves and double layers in plasmas, Planet. Space Sci., 46 (1998), 417–424. https://doi.org/10.1016/S0032-0633(97)00142-6 doi: 10.1016/S0032-0633(97)00142-6
    [20] S. Sain, A. Ghose-Choudhury, S. Garai, Solitary wave solutions for the KdV-type equations in plasma: a new approach with the Kudryashov function, Eur. Phys. J. Plus, 136 (2021), 226. https://doi.org/10.1140/epjp/s13360-021-01217-1 doi: 10.1140/epjp/s13360-021-01217-1
    [21] N. Raza, F. Salman, A. R. Butt, M. L. Gandarias, Lie symmetry analysis, soliton solutions and qualitative analysis concerning to the generalized q-deformed Sinh-Gordon equation, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106824. https://doi.org/10.1016/j.cnsns.2022.106824 doi: 10.1016/j.cnsns.2022.106824
    [22] S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, P. Roy. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
    [23] P. J. Olver, Applications of Lie groups to differential equations, New York: Springer, 1993. https://doi.org/10.1007/978-1-4684-0274-2
    [24] G. W. Bluman, A. F. Cheviakov, S. C. Anco, Applications of symmetry methods to partial differential equations, New York: Springer, 2010. https://doi.org/10.1007/978-0-387-68028-6
    [25] S. C. Anco, Generalization of Noether's theorem in modern form to non-variational partial differential equations, In: R. Melnik, R. Makarov, J. Belair, Recent progress and modern challenges in applied mathematics, modeling and computational science, Fields Institute Communications, 79 (2017), 119–182. https://doi.org/10.1007/978-1-4939-6969-2_5
    [26] S. C. Anco, G. Bluman, Direct construction of conservation laws from field equations, Phys. Rev. Lett., 78 (1997), 2869. https://doi.org/10.1103/PhysRevLett.78.2869 doi: 10.1103/PhysRevLett.78.2869
    [27] S. C. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications, Eur. J. Appl. Math., 13 (2002), 545–566. https://doi.org/10.1017/S095679250100465X doi: 10.1017/S095679250100465X
    [28] S. C. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: General treatment, Eur. J. Appl. Math., 13 (2002), 567–585. https://doi.org/10.1017/S0956792501004661 doi: 10.1017/S0956792501004661
    [29] T. Wolf, A comparison of four approaches to the calculation of conservation laws, Eur. J. Appl. Math., 13 (2002), 129–152. https://doi.org/10.1017/S0956792501004715 doi: 10.1017/S0956792501004715
    [30] W. X. Ma, Conservation laws by symmetries and adjoint symmetries, Discrete Cont. Dyn. Syst.-Ser. S, 11 (2018), 707–721. https://doi.org/10.3934/dcdss.2018044 doi: 10.3934/dcdss.2018044
    [31] M. L. Gandarias, M. Rosa, E. Recio, S. Anco, Conservation laws and symmetries of a generalized Kawahara equation, AIP Conf. Proc., 1836 (2017), 020072. https://doi.org/10.1063/1.4982012 doi: 10.1063/1.4982012
    [32] G. Bluman, S. Anco, Symmetry and integration methods for differential equations, Springer Science & Business Media, 2008.
    [33] S. C. Anco, M. L. Gandarias, Symmetry multi-reduction method for partial differential equations with conservation laws, Commun. Nonlinear Sci. Numer. Simul., 91 (2020), 105349. https://doi.org/10.1016/j.cnsns.2020.105349 doi: 10.1016/j.cnsns.2020.105349
    [34] N. A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Soliton. Fract., 24 (2005), 1217–1231. https://doi.org/10.1016/j.chaos.2004.09.109 doi: 10.1016/j.chaos.2004.09.109
    [35] A. Sjöberg, Double reduction of PDEs from the association of symmetries with conservation laws with applications, Appl. Math. Comput., 184 (2007), 608–616. https://doi.org/10.1016/j.amc.2006.06.059 doi: 10.1016/j.amc.2006.06.059
    [36] A. Sjöberg, On double reductions from symmetries and conservation laws, Nonlinear Anal.: Real World Appl., 10 (2009), 3472–3477. https://doi.org/10.1016/j.nonrwa.2008.09.029 doi: 10.1016/j.nonrwa.2008.09.029
    [37] A. H. Bokhari, A. Y. Al-Dweik, F. D. Zaman, A. H. Kara, F. M. Mahomed, Generalization of the double reduction theory, Nonlinear Anal.: Real World Appl., 11 (2010), 3763–3769. https://doi.org/10.1016/j.nonrwa.2010.02.006 doi: 10.1016/j.nonrwa.2010.02.006
    [38] Sirendaoreji, Unified Riccati equation expansion method and its application to two new classes of Benjamin-Bona-Mahony equations, Nonlinear Dyn., 89 (2017), 333–344. https://doi.org/10.1007/s11071-017-3457-6 doi: 10.1007/s11071-017-3457-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(761) PDF downloads(74) Cited by(2)

Article outline

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog