
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(4): 10289–10303.
DOI: 10.3934/math.2024503
Received: 20 December 2023
Revised: 26 February 2024
Accepted: 04 March 2024
Published: 14 March 2024

Research article

Symmetry reductions and conservation laws of a modified-mixed KdV
equation: exploring new interaction solutions

Nauman Raza1,2,*, Maria Luz Gandarias3 and Ghada Ali Basendwah4

1 Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590,
Pakistan

2 Department of Mathematics, Near East University, TRNC, Mersin 10, Nicosia 99138, Turkey
3 Department of Mathematics, University of Cadiz, Puerto Real, Cádiz 11510, Spain
4 Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi

Arabia

* Correspondence: Email: nauman.math@pu.edu.pk.

Abstract: This article represented the investigation of the modified mixed Korteweg-de Vries equation
using different versatile approaches. First, the Lie point symmetry approach was used to determine all
possible symmetry generators. With the help of these generators, we reduced the dimension of the
proposed equation which leads to the ordinary differential equation. Second, we employed the unified
Riccati equation expansion technique to construct the abundance of soliton dynamics. A group of kink
solitons and other solitons related to hyperbolic functions were among these solutions. To give the
physical meaning of these theoretical results, we plotted these solutions in 3D, contour, and 2D graphs
using suitable physical parameters. The comprehend outcomes were reported, which can be useful and
beneficial in the future investigation of the studied equation. The results showed that applied techniques
are very useful to study the other nonlinear physical problems in nonlinear sciences.
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1. Introduction

Over the previous few decades, researchers have shown considerable interest in the extraction of
solutions of nonlinear systems such as traveling wave solutions, including solitary waves, periodic
waves, kink and anti-kink solutions, solitons, and some integrability of some intriguing nonlinear
partial differential equations (PDEs) [1–5], for instance, the nonlinear Schrodinger equation [6],
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Burgers equation [7], modified equal width [8], modified equal width-Burgers equation [9], the KdV
model [10], combined KdV-mKdV equation [11], etc. Solitons are solitary waves that possess elastic
scattering properties. These waves emerge as a result of the intricate equilibrium between dispersion,
and nonlinearity. The origination of solitons can be attributed to the pioneering formulation of the KdV
equation [12, 13]. The KdV equation is extensively employed for the simulation of the propagation
of shallow, thin, and elongated water waves. It provides an explanation for a multitude of physical
processes, encompassing acoustic, hydromagnetic, and ion-acoustic waves. The standardized form of
the KdV model is expressed as follows:

Ωt + 6ΩΩx + Ωxxx = 0. (1.1)

This equation has a number of essential applications in a variety of scientific domains. Various
extensions of KdV equations have been extracted in recent decades. In [14], Wang and Kara have
introduced KdV and modified KdV equations. They have used the (2+1)-dimensional mKdV equations
to derive conservation laws by performing Lie symmetry analysis. In [15], the authors studied
the bifurcation and established some exact solutions for (2+1)-dimensional KdV equation. Later,
Wazwaz [16] developed new (3+1)-dimensional KdV and mKdV equations. The author demonstrated
their integrability using Painlevé analysis in [16] and established several multiple-solution solutions for
these equations. Moreover, the combined KdV-mKdV model has been investigated in [17] and derive
the integrability, stability analysis and soliton structures. Now, we have considered another extension
of the KdV equations called the the modified-mixed KdV (mmKdV) model, read as:

Ωt + (α
√

Ω + βΩ)Ωx + δΩxxx = 0, (1.2)

where Ω = Ω(x, t). The mmKdV equation characterizes an electron distribution with a flat top, wherein
the nonlinearity is more pronounced when the width is smaller and the velocity is higher [18–20].

In [20], the following assumption has been proposed

Ω = w2, w = w(x, t). (1.3)

By substituting (1.3) into (1.2), the following equation was obtained

wwt + (αw2 + βw3)wx + α(wwxxx + 3wxwxx) = 0. (1.4)

The polynomial function, and rational sinh-cosh methods were used to derive some results.
The Lie symmetry method applied to PDEs, is a powerful approach to obtain reductions and

invariant solutions [21].
Recently, Tian et al. [22] successfully proposed an effective and direct approach to study the

symmetry-preserving discretization for a class of generalized higher order equations, and proposed
an open problem about symmetries and the multipliers of conservation law.

In this paper we consider Eq (1.4) from the viewpoint of symmetry reductions in PDEs. We obtain
the Lie point symmetries admitted by (1.4) for arbitrary constants. We derived conservation laws for
Eq (1.4).

Taking into account the relationship between symmetries and conservation laws by using the
invariance of two conservation laws under translations, we derive two first integrals. By combining
these first integrals, we obtain a triple reduction to a first-order autonomous equation.

AIMS Mathematics Volume 9, Issue 4, 10289–10303.



10291

2. Lie point symmetries

A Lie point symmetry [23–25] for the Eq (1.4) pertains to a set of point transformations that
maintain the equations invariance. These transformations can be expressed in infinitesimal form:

t̃ =t + ετ(t, x,w) + O(ε2),
x̃ =x + εξ1(t, x,w) + O(ε2),
w̃ =w + εη(t, x,w) + O(ε2),

where ε symbolizes the group parameter, and the related vector field is described as follows:

X = τ(t, x,w)∂t + ξ(t, x,w)∂x + η(t, x,w)∂w. (2.1)

The transformation group will exhibit point symmetry if

(3)
Pr X

(
wwt + (αw2 + βw3)wx + α(wwxxx + 3wxwxx)

)
|E = 0. (2.2)

The expression “Pr(3) X” is the third prolongation of the vector field given by (2.1), while E refers
to the solution space of Eq (1.4). The Eq (2.2), which determines the outcome, separates based on
the derivatives of w. This division results in a linear system that is over-determined, involving the
infinitesimals τ(t, x,w), ξ(t, x,w), and η(t, x,w). This system is known as the determining system. By
solving the determining system, we are able to derive the subsequent outcomes:

A single-parameter Lie group on the variables (t, x,w) associated with Eq (1.4) is considered as a
point symmetry. This Lie group is characterized by a vector field that preserves the solution space of
the equation.

The incorporation of each identified symmetry enables a reduction in the number of independent
variables within Eq (1.4). Specifically, this reduction leads to the transformation of PDEs into ordinary
differential equations (ODEs). Moreover, these ODEs may possess additional symmetries that facilitate
a further reduction in the equation’s order. The solutions of these reduced ODEs correspond to invariant
solutions denoted as u(t, x,w) in relation to Eq (1.4).

Theorem 2.1. (i) The point symmetries for Eq (1.4), with α , 0, β , 0, δ , 0, are generated by:

X1 =∂t, (2.3)
X2 =∂x. (2.4)

(ii) For some particular parameters α and β, there are additional generators given below. For
α = 0,

X3 =t∂x +
1

2βw
∂w, (2.5)

X4 =3t∂t + x∂x − w∂w. (2.6)

(iii) For β = 0,

X5 =3t∂t + x∂x − 2w∂w. (2.7)
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(i) Their commutator is given for α = 0 by

[X1,X3] =X2, (2.8)
[X1,X4] =3X1, (2.9)
[X2,X4] =X2, (2.10)
[X3,X4] = − 2X3. (2.11)

(ii) Their commutator is given for β = 0 by

[X1,X5] =3X1, (2.12)
[X2,X5] =X2. (2.13)

The corresponding optimal systems are:
(i) For α = 0,

X1 + cX2, X4.

(ii) For β = 0,
X1 + cX2, X5.

2.1. Conservation laws

The conservation law for the PDE denoted by [26–30]: G(t, x,w,wt,wx,wxx, . . .) = 0, can be
expressed as DtT + DxΦ = 0. Here, T represents the conserved density and Φ is the flux vector,
both functions of t, x,w. The conserved current is denoted as (T,Φ).

Each conservation law for the PDE G = 0 is linked to a corresponding multiplier. An injective
relationship exists between nontrivial conserved currents (T,Φ)|E modulo trivial ones and nonzero
multipliers Q|E. This relationship is characterized by QG = DtT + DxΦ holding as an identity, where
Q is a function of t, x,w, and derivatives of w, ensuring that Q|E is non-singular. Various explicit
methods can be employed to obtain a conserved current for each solution Q.

We will focus on examining low-order multipliers of the form Q(t, x,w,wx,wxx). The determining
equations can be decomposed into an over-determined linear system of equations. Solving this system
for Q is straightforward, subject to the conditions α , 0, β , 0, δ , 0.

Proposition 2.1. All multipliers [31] admitted by the mmKdV equation (1.4), with α , 0, β , 0, δ , 0,
are given by:

Q1 = 1, (2.14)

Q2 =
w2

2
, (2.15)

Q3 = wwxx + w2
x +

β

4δw
4 + α

3δw
3. (2.16)

These multipliers yield all the nontrivial conservation laws, summarized as below.

Theorem 2.2. The conservation laws for the mmKdV equation (1.4), with α , 0, β , 0, δ , 0 are
given by:

T1 =
w2

2
,
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X1 =δ(wwxx + w2
x) +

β

4
w4 +

α

3
w3, (2.17)

T2 =
w4

8
,

X2 =
δ

2
w3wxx +

β

12
w6 +

α

10
w5, (2.18)

T3 = −
1
2

w2w2
x +

β

24δ
w6 +

α

15δ
w5,

X3 =
δ

2
w2w2

xx + (δww2
x +

β

4
w5 +

α

3
w4)wxx

+ w2wtwx +
δ

2
w4

x + (
β

4
w4 +

α

3
w3)w2

x +
β2

32δ
w8 +

βα

12δ
w7 +

α2

18δ
w6. (2.19)

2.2. Traveling wave reduction, scaling reduction, and first integrals from symmetry reduction

Symmetry reduction [32] is frequently employed, with one prevalent application being the
simplification to ODEs.

A traveling wave has the form

w(t, x) = U(ξ) ξ = x − ct, (2.20)

where c is the velocity of the traveling wave.
Inserting Eq (2.20) into the Eq (1.2) results in a following ODE:

δ(UU′′′ + 3U′U′′) + (βU3 + αU2 − cU)U′ = 0. (2.21)

In [33], a comprehensive multi-reduction approach was presented, demonstrating that symmetry-
based conservation laws give rise to first integrals. This method directly utilizes the inherent symmetry
to identify all first integrals. As a result of this reduction, two distinct first integrals are obtained. The
functionally independent first integrals of the ODE given by (2.21) are subsequently derived from the
corresponding symmetry-invariant multipliers. Q1 = 1, Q2 = w2

2 are given by

Ψ1 =
c
2

U2 − δUU′′ − δ(U′)2 −
β

4
U4 −

α

3
U3 = C1,

Ψ2 =
c
4

U8 −
δ

2
U3U′′ −

β

12
U6 −

α

3
U5 = C2 = C2,

(2.22)

and eliminating U′′ yields an autonomous nonlinear first-order ODE

(U′)2 +
β

12δ
U4 +

2α
15δ

U3 −
c

4δ
U2 +

C1

δ
+

2C2

δU2 = 0, (2.23)

with C1, C2 arbitrary constants.
We point out that, for special values of the constants, the general solution of Eq (2.23) can be written

in terms of the Jacobi elliptic functions [34].
Now, we consider the scaling symmetry

X4 = 3t∂t + x∂x − w∂w,
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which gives similarity solutions

w(t, x) =
U(z)

x
, z =

x3

t
, (2.24)

where z and U are the scaling invariants.
The similarity reduced ODE for this solution is a third-order nonlinear ODE

δz3(27U2U′′′ + 81UU′U′′) + (3βzU4 + z(24δ − z)U2)U′ − βU5 − 12δU3 = 0. (2.25)

In [35–37], it is observed that when considering ODEs resulting from a symmetry reduction under
the scaling of the Eq (1.2), the conservation laws of the equation that are invariant under scalings reduce
to a first integral of the ODE. Additionally, the work in [33] introduced a general multi-reduction
method, demonstrating that all first integrals arising from conservation laws can be directly obtained
using the symmetry. This reduction process results in two first integrals. The derived first integral of
the ODE (2.25) is obtained from the corresponding symmetry-invariant multiplier. Q3 = βtu2 − x is
given by

Ψ1 = −27δU(βU2 − z)U′′ + 27δz(U′)2 −
U2

2z2 ((βU2 − z)2 + 12δ(βU2 − 2z)) = C1, (2.26)

which is a nonlinear second-order ODE.

3. Exact solution through unified Riccati equation expansion method

Here, we will gain the exact solution of Eq (2.21) by using the unified Riccati equation
approach [38]. According to this, the proposed method has the following finite form of the analytic
solution:

U(τ) = B0 +

n∑
k=1

BkGk(τ), (3.1)

where Bk, (k = 1, 2, 3, ..., n) are arbitrary parameters such that Bn , 0 and n is a positive integer.
Further, the function G(τ) must satisfy the following equation:

G′(τ) = p0 + p1G(τ) + p2G2(τ). (3.2)

On solving Eq (3.2) and taking constant of integration as zero, yields the following solution:
(1) If ∆ > 0,

G1(τ) = −
p1

2p2
−

√
∆

2l2
tanh

 √∆τ

2

 , (3.3)

G2(τ) = −
p1

2p2
−

√
∆

2l2
coth

 √∆τ

2

 . (3.4)

(2) If ∆ < 0,

G3(τ) = −
p1

2p2
−

√
∆

2l2
tanh

 √∆τ

2

 , (3.5)

G4(τ) = −
p1

2p2
−

√
∆

2l2
coth

 √∆τ

2

 . (3.6)
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(3) If ∆ = 0,

G5(τ) = −
p1

2p2
−

1
l2τ + c1

, (3.7)

where ∆ = p2
1 − 4p0 p2.

3.1. Solution for Eq (2.21)

Apply the homogeneous balance principle to calculate the balancing number n, which will be used
to define the degree of the analytic solution. Balancing the dispersive and highest nonlinear terms, we
get n = 1. Therefore, the method of solution takes the linear form as

U(τ) = B0 + B1G(τ). (3.8)

By inserting Eqs (3.8) and (3.2) into Eq (2.21), collecting terms having identical powers of Gk(τ), and
equating the coefficients to zero leads to the derivation of the subsequent outcomes.

Family 1.

B0 =
p1B1

2p2
, α = 0, p0 =

2δp2
1 + c

8δp2
, β = −

12δp2
2

B2
1

. (3.9)

Family 2.

α =
15cp2

2B0 p2 − B1 p1
, p0 = −

B0(B0 p2 − B1 p1)
B2

1

,

β = −
3cp2

2

(2B0 p2 − B1 p1)2 , δ =
cB2

1

(2B0 p2 − B1 p1)2 . (3.10)

Use Family 1:
Case 1: If ∆ > 0, then

U1,1(x, t) = B1

−
√

∆ tanh
(

1
2

√
∆(x − ct)

)
2p2

−
p1

2p2

 +
B1 p1

2p2
, (3.11)

U1,2(x, t) = B1

−
√

∆ coth
(

1
2

√
∆(x − ct)

)
2p2

−
p1

2p2

 +
B1 p1

2p2
. (3.12)

Case 2: If ∆ < 0, then

U1,3(x, t) = B1

−
√
−∆ tan

(
1
2

√
−∆(x − ct)

)
2p2

−
p1

2p2

 +
B1 p1

2p2
, (3.13)

U1,4(x, t) = B1

−
√
−∆ cot

(
1
2

√
−∆(x − ct)

)
2p2

−
p1

2p2

 +
B1 p1

2p2
. (3.14)

Case 3: If ∆ = 0, then

U1,5(x, t) = B1

(
−

1
p2(x − ct) + c1

−
p1

2p2

)
+

B1 p1

2p2
. (3.15)
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Use Family 2:
Case 1: If ∆ > 0, then

U2,1(x, t) = B1

−
√

∆ tanh
(

1
2

√
∆(x − ct)

)
2p2

−
p1

2p2

 + B0, (3.16)

U2,2(x, t) = B1

−
√

∆ coth
(

1
2

√
∆(x − ct)

)
2p2

−
p1

2p2

 + B0. (3.17)

Case 2: If ∆ < 0, then

U2,3(x, t) = B1

−
√
−∆ tan

(
1
2

√
−∆(x − ct)

)
2p2

−
p1

2p2

 + B0, (3.18)

U2,4(x, t) = B1

−
√
−∆ cot

(
1
2

√
−∆(x − ct)

)
2p2

−
p1

2p2

 + B0. (3.19)

Case 3: If ∆ = 0, then

U2,5(x, t) = B1

(
−

1
p2(x − ct) + c1

−
p1

2p2

)
+ B0. (3.20)

3.2. Solution for Eq (2.26)

By applying the homogeneous balance principle to Eq (2.26), we get n = 1 and Eq (3.1) yields to
the following:

U(τ) = B0 + B1G(τ). (3.21)

On substituting Eqs (3.2) and (3.21) into Eq (2.26) with C1 = 0, collecting all terms having identical
powers of Gk(τ) and setting each coefficient to zero, and solving the algebraic equations by Maple, we
obtain the following result:

δ =
z

24
, p0 = −

2βa2
0

a1z2
√
−

2β
9z

, p1 =
2
√
−

2β
9z a0

z
, p2 =

√
−

2β
9z a1

z
. (3.22)

As ∆ = p2
1 − 4p0 p1 = 0 for arbitrary values of p0, p1, and p2, we have

U(x, t) = −
3B1z√

−
2β
z B1(x − ct) + 3c1z

, (3.23)

where z = x3

t and c1 is constant of integration.
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4. Conclusions

In this study, we have successfully obtained the ODE by utilizing all available Lie symmetry
generators. Through the utilization of these symmetry generators, the proposed equation has been
reduced to an ODE via symmetry reductions. The unified Riccati equation expansion method has been
effectively employed to obtain the ODE, as well as new interaction solutions such as kink solitons
and other solitons associated with hyperbolic functions. These solutions have been retrieved with
great success. Additionally, in order to demonstrate the visual representation of several wave patterns
with different system features and to validate the accuracy of our findings as shown in Figures 1–
7. The outcomes of this endeavor will serve as a source of inspiration and motivation for future
discussions in the realm of nonlinear physical sciences. Through the analysis of the computations,
we are able to ascertain the significant value of this method in terms of its ability to locate precise
wave solutions in a more comprehensive manner. In subsequent endeavors, we can expand upon
the methods provided to incorporate various other nonlinear models. The resulting solutions present
themselves as innovative, captivating, and potentially instrumental in enhancing our comprehension of
energy transfer and diffusion processes within mathematical models of diverse fields that are pertinent,
wherein nonlinear challenging matters are encountered.

(a) 3D plot
-4 -2 0 2 4

-2

-1

0

1

2

x

t

(b) contour plot

-4 -2 2 4
x

-0.4

-0.2

0.2

0.4

U1,1

(c) 2D plot

(d) 3D plot
-4 -2 0 2 4

-2

-1

0

1

2

x

t

(e) contour plot

-4 -2 2 4
x

-2

-1

1

2

U

(f) 2D plot

Figure 1. Graphical representation of Eqs (3.11) and (3.12) using suitable parameters B1 =

3, c = 2,∆ = 1, p1 = 2 and p2 = 3.
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Figure 2. Graphical representation of Eqs (3.13) and (3.14) using suitable parameters B1 =

3, c = 2,∆ = −1, p1 = 2 and p2 = 3.
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Figure 3. Graphical representation of Eq (3.15) using suitable parameters B1 = 3, c = 2,∆ =

0, p1 = 2 and p2 = 3.
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Figure 4. Graphical representation of Eqs (3.16) and (3.17) using suitable parameters B1 =

3, c = 2,∆ = 1, p1 = 2 and p2 = 3.
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Figure 5. Graphical representation of Eqs (3.18) and (3.19) using suitable parameters B1 =

3, c = 2,∆ = −1, p1 = 2 and p2 = 3.

AIMS Mathematics Volume 9, Issue 4, 10289–10303.



10300

(a) 3D plot
-4 -2 0 2 4

-2

-1

0

1

2

x

t

(b) contour plot

-4 -2 2 4
x

-2

-1

1

2

(c) 2D plot

Figure 6. Graphical representation of Eq (3.20) using suitable parameters B1 = 3, c = 2, ∆ =

0, p1 = 2 and p2 = 3.
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Figure 7. Graphical representation of Eq (3.23) using suitable parameters B1 = 1, c =

−1.2, β = −0.5 and c1 = 2.
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