Research article

Analyzing the continuity of the mild solution in finite element analysis of semilinear stochastic subdiffusion problems

  • Received: 02 January 2024 Revised: 04 February 2024 Accepted: 18 February 2024 Published: 07 March 2024
  • MSC : 65C60, 65J15, 65M70, 65N35

  • This paper aimed to further introduce the finite element analysis of non-smooth data for semilinear stochastic subdiffusion problems driven by fractionally integrated additive noise. The mild solution of this stochastic model consisted of three different Mittag-Leffler functions. We analyzed the smoothness of the solution and utilized complex integration to approximate the error of the solution operator under non-smooth data. Consequently, optimal convergence estimates were obtained, and we also obtained the continuity conditions of the mild solution. Finally, the influence of the fractional parameters $ \alpha $ and $ \gamma $ on the convergence rates were accurately demonstrated through numerical examples.

    Citation: Fang Cheng, Ye Hu, Mati ur Rahman. Analyzing the continuity of the mild solution in finite element analysis of semilinear stochastic subdiffusion problems[J]. AIMS Mathematics, 2024, 9(4): 9364-9379. doi: 10.3934/math.2024456

    Related Papers:

  • This paper aimed to further introduce the finite element analysis of non-smooth data for semilinear stochastic subdiffusion problems driven by fractionally integrated additive noise. The mild solution of this stochastic model consisted of three different Mittag-Leffler functions. We analyzed the smoothness of the solution and utilized complex integration to approximate the error of the solution operator under non-smooth data. Consequently, optimal convergence estimates were obtained, and we also obtained the continuity conditions of the mild solution. Finally, the influence of the fractional parameters $ \alpha $ and $ \gamma $ on the convergence rates were accurately demonstrated through numerical examples.



    加载中


    [1] B. Baeumer, M. Geissert, M. Kovács, Existence, uniqueness and regularity for a class of semilinear stochastic Volterra equations with multiplicative noise, J. Differ. Equations, 258 (2015), 535–554. https://doi.org/10.1016/j.jde.2014.09.020 doi: 10.1016/j.jde.2014.09.020
    [2] Z. Q. Chen, K. H. Kim, P. Kim, Fractional time stochastic partial differential equations, Stoch. Proc. Appl., 125 (2015), 1470–1499. https://doi.org/10.1016/j.spa.2014.11.005 doi: 10.1016/j.spa.2014.11.005
    [3] C. M. Elliott, S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation, Math. Comp., 58 (1992), 603–630.
    [4] H. Fujita, T. Suzuki, Evolution problems, In Handbook of Numerical Analysis, North-Holland, Amsterdam, 2 (1991), 789–928.
    [5] B. T. Jin, Y. B. Yan, Z. Zhou, Numerical approximation of stochastic time-fractional diffusion, ESAIM: M2AN, 53 (2019), 1245–1268. https://doi.org/10.1051/m2an/2019025 doi: 10.1051/m2an/2019025
    [6] M. Kovács, S. Larsson, F. Saedpanah, Mittag-Leffler Euler integrator for a stochastic fractional order equation with additive noise, SIAM J. Numer. Anal., 58 (2020), 66–85. https://doi.org/10.1137/18M1177895 doi: 10.1137/18M1177895
    [7] R. Kruse, Strong and weak approximation of semilinear stochastic evolution equations, Springer, Berlin, 2016.
    [8] Y. Hu, C. P. Li, Y. Yan, Weak convergence of the L1 scheme for a stochastic subdiffusion problem driven by fractionally integrated additive noise, Appl. Numer. Math., 178 (2022), 192–215. https://doi.org/10.1016/j.apnum.2022.04.004 doi: 10.1016/j.apnum.2022.04.004
    [9] Y. Hu, Y. Yan, Shahzad Sarwar, Strong approximation of stochastic semilinear subdiffusion and superdiffusion driven by fractionally integrated additive noise, Numer. Meth. Part. D. E., 2023. https://doi.org/10.1002/num.23068
    [10] X. C. Li, X. Y. Yang, Error estimates of finite element methods for stochastic fractional differential equations, J. Comput. Math., 35 (2017), 346–362. https://doi.org/10.4208/jcm.1607-m2015-0329 doi: 10.4208/jcm.1607-m2015-0329
    [11] G. D. Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992. https://doi.org/10.1017/CBO9780511666223
    [12] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
    [13] J. W. Wang, X. X. Jiang, X. H. Yang, H. X. Zhang, A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers' type nonlinearity, J. Appl. Math. Comput., 70 (2024), 489–511. https://doi.org/10.1007/s12190-023-01975-4 doi: 10.1007/s12190-023-01975-4
    [14] X. J. Wang, R. S. Qi, A note on an accelerated exponential Euler method for parabolic SPDEs with additive noise, Appl. Math. Lett., 46 (2015), 31–37. https://doi.org/10.1016/j.aml.2015.02.001 doi: 10.1016/j.aml.2015.02.001
    [15] X. H. Yang, Z. M. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
    [16] X. H. Yang, Z. M. Zhang, Q. Zhang, G. W. Yuan, Simple positivity-preserving nonlinear finite volume scheme for subdiffusion equations on general non-conforming distorted meshes, Nonlinear Dyn., 108 (2022), 3859–3886. https://doi.org/10.1007/s11071-022-07399-2 doi: 10.1007/s11071-022-07399-2
    [17] Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43 (2005), 1363–1384. https://doi.org/10.1137/040605278 doi: 10.1137/040605278
    [18] V. Thomée, Galerkin finite element methods for parabolic problems, Springer-Verlag, Berlin, 2007.
    [19] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, New York, 1993.
    [20] H. X. Zhang, Y. Liu, X. H. Yang, An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space, J. Appl. Math. Comput., 69 (2023), 651–674. https://doi.org/10.1007/s12190-022-01760-9 doi: 10.1007/s12190-022-01760-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(541) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog