Research article Special Issues

Fractional tempered differential equations depending on arbitrary kernels

  • Received: 18 December 2023 Revised: 21 February 2024 Accepted: 29 February 2024 Published: 05 March 2024
  • MSC : 26A33, 34D20

  • In this paper, we expanded the concept of tempered fractional derivatives within both the Riemann-Liouville and Caputo frameworks, introducing a novel class of fractional operators. These operators are characterized by their dependence on a specific arbitrary smooth function. We then investigated the existence and uniqueness of solutions for a particular class of fractional differential equations, subject to specified initial conditions. To aid our analysis, we introduced and demonstrated the application of Picard's iteration method. Additionally, we utilized the Gronwall inequality to explore the stability of the system under examination. Finally, we studied the attractivity of the solutions, establishing the existence of at least one attractive solution for the system. Throughout the paper, we provide examples and remarks to support and reinforce our findings.

    Citation: Ricardo Almeida, Natália Martins, J. Vanterler da C. Sousa. Fractional tempered differential equations depending on arbitrary kernels[J]. AIMS Mathematics, 2024, 9(4): 9107-9127. doi: 10.3934/math.2024443

    Related Papers:

  • In this paper, we expanded the concept of tempered fractional derivatives within both the Riemann-Liouville and Caputo frameworks, introducing a novel class of fractional operators. These operators are characterized by their dependence on a specific arbitrary smooth function. We then investigated the existence and uniqueness of solutions for a particular class of fractional differential equations, subject to specified initial conditions. To aid our analysis, we introduced and demonstrated the application of Picard's iteration method. Additionally, we utilized the Gronwall inequality to explore the stability of the system under examination. Finally, we studied the attractivity of the solutions, establishing the existence of at least one attractive solution for the system. Throughout the paper, we provide examples and remarks to support and reinforce our findings.



    加载中


    [1] J. W. Deng, X. Wu, W. Wang, Mean exit time and escape probability for the anomalous processes with the tempered power-law waiting times, Europhys. Lett., 117 (2017), 10009. https://doi.org/10.1209/0295-5075/117/10009 doi: 10.1209/0295-5075/117/10009
    [2] J. Zhang, J. Wang, Y. Zhou, Numerical analysis for time-fractional Schrödinger equation on two space dimensions, Adv. Differ. Equ., 2020 (2020), 53. https://doi.org/10.1186/s13662-020-2525-2 doi: 10.1186/s13662-020-2525-2
    [3] M. E. Krijnen, R. A. J. van Ostayen, H. HosseinNia, The application of fractional order control for an air-based contactless actuation system, ISA Trans., 82 (2018), 172–183. https://doi.org/10.1016/j.isatra.2017.04.014 doi: 10.1016/j.isatra.2017.04.014
    [4] C. D. Constantinescu, J. M. Ramirez, W. R. Zhu, An application of fractional differential equations to risk theory, Finance Stoch., 23 (2019), 1001–1024. https://doi.org/10.1007/s00780-019-00400-8 doi: 10.1007/s00780-019-00400-8
    [5] S. Alizadeh, D. Baleanu, S. Rezapour, Analyzing transient response of the parallel RCL circuit by using the Caputo-Fabrizio fractional derivative, Adv. Differ. Equ., 2020 (2020), 55. https://doi.org/10.1186/s13662-020-2527-0 doi: 10.1186/s13662-020-2527-0
    [6] S. Longhi, Fractional Schrödinger equation in optics, Opt. Lett., 40 (2015), 1117–1120. https://doi.org/10.1364/OL.40.001117 doi: 10.1364/OL.40.001117
    [7] C. Ingo, R. L. Magin, L. Colon-Perez, W. Triplett, T. H. Mareci, On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue, Magn. Reson Med., 71 (2014), 617–627. https://doi.org/10.1002/mrm.24706 doi: 10.1002/mrm.24706
    [8] C. M. A. Pinto, A. R. M. Carvalho, A latency fractional order model for HIV dynamics, J. Comput. Appl. Math., 312 (2017), 240–256. https://doi.org/10.1016/j.cam.2016.05.019 doi: 10.1016/j.cam.2016.05.019
    [9] R. Almeida, N. Martins, C. J. Silva, Global stability condition for the disease-free equilibrium point of fractional epidemiological models, Axioms, 10 (2021), 238. https://doi.org/10.3390/axioms10040238 doi: 10.3390/axioms10040238
    [10] C. Li, W. Deng, L. Zhao, Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1989–2015. https://doi.org/10.3934/dcdsb.2019026 doi: 10.3934/dcdsb.2019026
    [11] N. A. Obeidat, D. E. Bentil, New theories and applications of tempered fractional differential equations, Nonlinear Dyn., 105 (2021), 1689–1702. https://doi.org/10.1007/s11071-021-06628-4 doi: 10.1007/s11071-021-06628-4
    [12] F. Sultana, D. Singh, R. Pandey, D. Zeidan, Numerical schemes for a class of tempered fractional integro-differential equations, Appl. Numer. Math., 157 (2020), 110–134. https://doi.org/10.1016/j.apnum.2020.05.026 doi: 10.1016/j.apnum.2020.05.026
    [13] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [14] J. W. Deng, L. J. Zhao, Y. J. Wu, Fast predictor-corrector approach for the tempered fractional ordinary differential equations, Numer. Algor., 74 (2017), 717–754. https://doi.org/10.1007/s11075-016-0169-9 doi: 10.1007/s11075-016-0169-9
    [15] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-Holland mathematics studies, Amsterdam: Elsevier, 2006.
    [16] T. J. Osler, Fractional derivatives of a composite function, SIAM J. Math. Anal., 1 (1970), 288–293. https://doi.org/10.1137/0501026 doi: 10.1137/0501026
    [17] F. Sabzikar, M. M. Meerschaert, J. H. Chen, Tempered fractional calculus, J. Comput. Phys., 293 (2015), 14–28. https://doi.org/10.1016/j.jcp.2014.04.024 doi: 10.1016/j.jcp.2014.04.024
    [18] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993.
    [19] H. Zitane, D. F. M. Torres, Finite time stability of tempered fractional systems with time delays, Chaos Solitons Fractals, 177 (2023), 114265. https://doi.org/10.1016/j.chaos.2023.114265 doi: 10.1016/j.chaos.2023.114265
    [20] J. V. C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [21] J. V. C. Sousa, E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi$-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87–106. http://dx.doi.org/10.7153/dea-2019-11-02 doi: 10.7153/dea-2019-11-02
    [22] R. Almeida, A. B. Malinowska, T. Odzijewicz, On systems of fractional equations with the $g$-Caputo derivative and their applications, Math. Meth. Appl. Sci., 44 (2021), 8026–8041. https://doi.org/10.1002/mma.5678 doi: 10.1002/mma.5678
    [23] L. Zhang, Y. Zhou, Existence and attractivity of solutions for fractional difference equations, Adv. Differ. Equ., 2018 (2018), 191. https://doi.org/10.1186/s13662-018-1637-4 doi: 10.1186/s13662-018-1637-4
    [24] J. V. C. Sousa, M. Benchohra, G. M. N'Guérékata, Attractivity for differential equations of fractional order and $\psi$-Hilfer type, Frac. Cal. Appl. Anal., 23 (2020), 1188–1207. https://doi.org/10.1515/fca-2020-0060 doi: 10.1515/fca-2020-0060
    [25] J. W. Green, F. A. Valentine, On the Arzelà-Ascoli theorem, Math. Magazine, 34 (1961), 199–202. https://doi.org/10.1080/0025570X.1961.11975217 doi: 10.1080/0025570X.1961.11975217
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(872) PDF downloads(112) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog