Research article Special Issues

Novel types of supra soft operators via supra soft sd-sets and applications

  • Received: 21 December 2023 Revised: 12 January 2024 Accepted: 25 January 2024 Published: 06 February 2024
  • MSC : 54A05, 54B05, 54C10

  • Our purpose in this work is to present a new generalized soft open set in supra soft topological spaces, named supra soft sd-sets. With deep discussion, we found out that they contain almost all kinds of weaker supra soft open sets which have been discussed in earlier studies, as shown in the following figure.

    So, directly we can notice the value of the introduced results. Also, the notion of a supra soft sc-set is presented, and many of its basic properties are explored. Furthermore, we show that the new family fails to form soft topology or supra soft topology. In addition, the definitions of the supra soft sd-closure operator, supra soft sd-cluster operator, and supra soft sd- interior operator are introduced, and many of their interesting properties are explored. Finally, we prove that the property of being a supra soft sd-set is a supra soft topological property.

    Citation: Alaa M. Abd El-latif. Novel types of supra soft operators via supra soft sd-sets and applications[J]. AIMS Mathematics, 2024, 9(3): 6586-6602. doi: 10.3934/math.2024321

    Related Papers:

  • Our purpose in this work is to present a new generalized soft open set in supra soft topological spaces, named supra soft sd-sets. With deep discussion, we found out that they contain almost all kinds of weaker supra soft open sets which have been discussed in earlier studies, as shown in the following figure.

    So, directly we can notice the value of the introduced results. Also, the notion of a supra soft sc-set is presented, and many of its basic properties are explored. Furthermore, we show that the new family fails to form soft topology or supra soft topology. In addition, the definitions of the supra soft sd-closure operator, supra soft sd-cluster operator, and supra soft sd- interior operator are introduced, and many of their interesting properties are explored. Finally, we prove that the property of being a supra soft sd-set is a supra soft topological property.



    加载中


    [1] O. Njastad, On some classes of nearly open sets, Pac. J. Math., 15 (1965), 961–970. https://doi.org/10.2140/pjm.1965.15.961 doi: 10.2140/pjm.1965.15.961
    [2] C. C. Pugh, Real mathematical analysis, Springer Science and Business Media, 2003.
    [3] T. M. Al-shami, T. Noiri, Compactness and Lindelöfness using somewhere dense and $cs$-dense sets, Novi. Sad. J. Math., 52 (2022), 165–176. https://doi.org/10.30755/NSJOM.12283 doi: 10.30755/NSJOM.12283
    [4] T. M. Al-shami, T. Noiri, More notions and mappings via somewhere dense sets, Afr. Mat., 30 (2019), 1011–1024. https://doi.org/10.1007/s13370-019-00700-4 doi: 10.1007/s13370-019-00700-4
    [5] T. M. Al-Shami, Somewhere dense sets and S$T_1$ spaces, Punjab Univ. J. Math., 49 (2017), 101–111.
    [6] M. E. El-Shafei, M. Abo-Elhamayel, T. M. Al-Shami, On supra R-open sets and some applications on topological spaces, J. Prog. Res. Math., 8 (2016), 1237–1248.
    [7] A. S. Mashhour, A. A. Allam, F. S. Mahmoud, F. H. Khedr, On supra topological spaces, Indian J. Pure Ap. Mat., 4 (1983), 502–510.
    [8] G. Thangaraj, Resolvability and irresolvability in fuzzy topological spaces, News Bull. Cal. Math. Soc., 31 (2008), 11–14.
    [9] D. A. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [10] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006
    [11] I. Zorlutuna, M. Akdag, W. K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform., 3 (2012), 171–185.
    [12] S. Al Ghour, Weaker forms of soft regular and soft $T_2$ soft topological spaces, Mathematics, 9 (2021), 2153. https://doi.org/10.3390/math9172153 doi: 10.3390/math9172153
    [13] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, $\gamma$-operation and decompositions of some forms of soft continuity in soft topological spaces, Ann. Fuzzy Math. Inform., 7 (2014), 181–196.
    [14] S. A. El-Sheikh, A. M. El-Latif, Characterization of b-open soft sets in soft topological spaces, J. New Theory, 2 (2015), 8–18.
    [15] T. M. Al-shami, M. Arar, R. Abu-Gadiri, Z. A. Ameen, On weakly soft $\beta$-open sets and weakly soft $\beta$-continuity, J. Intell. Fuzzy Syst., 45 (2023), 6351–6363. https://doi.org/10.3233/JIFS-230858 doi: 10.3233/JIFS-230858
    [16] T. M. Al-shami, R. A. Hosny, R. Abu-Gadiri, M. Arar, A novel approach to study soft preopen sets inspired by classical topologies, J. Intell. Fuzzy Syst., 45 (2023), 6339–6350. https://doi.org/10.3233/JIFS-230191 doi: 10.3233/JIFS-230191
    [17] T. M. Al-shami, R. A. Hosny, A. Mhemdi, R. Abu-Gadiri, S. Saleh, Weakly soft $b$-open sets and their usages via soft topologies: A novel approach, J. Intell. Fuzzy Syst., 45 (2023), 7727–7738. https://doi.org/10.3233/JIFS-230436 doi: 10.3233/JIFS-230436
    [18] T. M. Al-shami, Soft somewhere dense sets on soft topological spaces, Commun. Korean Math. S., 33 (2018), 1341–1356.
    [19] T. M. Al-shami, I. Alshammari, B. A. Asaad, Soft maps via soft somewhere dense sets, Filomat, 34 (2020), 3429–3440. https://doi.org/10.2298/FIL2010429A doi: 10.2298/FIL2010429A
    [20] B. A. Asaad, T. M. Al-shami, Z. A. Ameen, On soft somewhere dense open functions and soft Baire spaces, Iraqi J. Sci., 64 (2023), 373–384. https://doi.org/10.24996/ijs.2023.64.1.35 doi: 10.24996/ijs.2023.64.1.35
    [21] Z. A. Ameen, R. Abu-Gdairi, T. M. Al-shami, B. A. Asaad, M. Arar, Further properties of soft somewhere dense continuous functions and soft Baire spaces, J. Math. Comput. Sci., 32 (2024), 54–63. https://doi.org/10.22436/jmcs.032.01.05 doi: 10.22436/jmcs.032.01.05
    [22] Z. A. Ameen, T. M. Al-shami, B. A. Asaad, Further properties of soft somewhere dense continuous functions and soft Baire spaces, J. Math. Comput. Sci., 32 (2023), 54–63. https://doi.org/10.22436/jmcs.032.01.05 doi: 10.22436/jmcs.032.01.05
    [23] M. E. El-Shafei, T. M. Al-Shami, Some operators of a soft set and soft connected spaces using soft somewhere dense sets, J. Interdiscip. Math., 24 (2021), 1471–1495. https://doi.org/10.1080/09720502.2020.1842348 doi: 10.1080/09720502.2020.1842348
    [24] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, Soft ideal theory soft local function and generated soft topological spaces, Appl. Math. Inform. Sci., 8 (2014), 1595–1603. https://doi.org/10.12785/amis/080413 doi: 10.12785/amis/080413
    [25] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, Soft semi compactness via soft ideals, Appl. Math. Inform. Sci., 8 (2014), 2297–2306. https://doi.org/10.12785/amis/080524 doi: 10.12785/amis/080524
    [26] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, Soft connectedness via soft ideals, J. New Results Sci., 4 (2014), 90–108.
    [27] M. Akdag, F. Erol, Soft I-sets and soft I-continuity of functions, Gazi. U. J. Sci., 27 (2014), 923–932. https://doi.org/10.1155/2014/843456 doi: 10.1155/2014/843456
    [28] A. A. Nasef, M. Parimala, R. Jeevitha, M. K. El-Sayed, Soft ideal theory and applications, Int. J. Nonlinear Anal., 13 (2022), 1335–1342.
    [29] F. Gharib, A. M. Abd El-latif, Soft semi local functions in soft ideal topological spaces, Eur. J. Pure Appl. Math., 12 (2019), 857–869. https://doi.org/10.29020/nybg.ejpam.v12i3.3442 doi: 10.29020/nybg.ejpam.v12i3.3442
    [30] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, $\gamma$-operation and decompositions of some forms of soft continuity of soft topological spaces via soft ideal, Ann. Fuzzy Math. Inform., 9 (2015), 385–402.
    [31] H. I. Mustafa, F. M. Sleim, Soft generalized closed sets with respect to an ideal in soft topological spaces, Appl. Math. Inform. Sci., 8 (2014), 665–671. https://doi.org/10.12785/amis/080225 doi: 10.12785/amis/080225
    [32] Z. A. Ameen, M. H. Alqahtani, Congruence representations via soft ideals in soft topological spaces, Axioms, 12 (2023), 1015. https://doi.org/10.3390/axioms12111015 doi: 10.3390/axioms12111015
    [33] A. M. Abd El-latif, Generalized soft rough sets and generated soft ideal rough topological spaces, J. Intell. Fuzzy Syst., 34 (2018), 517–524. https://doi.org/10.3233/JIFS-17610 doi: 10.3233/JIFS-17610
    [34] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, Soft semi (quasi) Hausdorff spaces via soft ideals, South Asian J. Math., 4 (2014), 265–284.
    [35] S. A. El-Sheikh, A. M. Abd El-latif, Decompositions of some types of supra soft sets and soft continuity, Int. J. Math. Trends Tech., 9 (2014), 37–56. https://doi.org/10.14445/22315373/IJMTT-V9P504 doi: 10.14445/22315373/IJMTT-V9P504
    [36] A. M. Abd El-latif, Decomposition of supra soft locally closed sets and supra slc-continuity, Int. J. Nonlinear Anal., 9 (2018), 13–25. https://doi.org/10.30948/afmi.2017.13.1.63 doi: 10.30948/afmi.2017.13.1.63
    [37] A. M. Abd El-latif, S. Karataş, Supra $b$-open soft sets and supra $b$-soft continuity on soft topological spaces, J. Math. Comput. Appl. Res., 5 (2015), 1–18. https://doi.org/10.18576/isl/050101 doi: 10.18576/isl/050101
    [38] A. M. Abd El-latif, M. H. Alqahtani, A new soft operators related to supra soft $\delta_i$-open sets and applications, AIMS Math., 9 (2024), 3076–3096. https://doi.org/10.3934/math.2024150 doi: 10.3934/math.2024150
    [39] A. M. Abd El-latif, Soft supra strongly generalized closed sets, J. Intell. Fuzzy Syst., 31 (2016), 1311–1317. https://doi.org/10.3233/IFS-162197 doi: 10.3233/IFS-162197
    [40] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, Supra generalized closed soft sets with respect to an soft ideal in supra soft topological spaces, Appl. Math. Inform. Sci., 8 (2014), 1731–1740. https://doi.org/10.12785/amis/080430 doi: 10.12785/amis/080430
    [41] T. M. Al-shami, J. C. R. Alcantud, A. A. Azzam, Two new families of supra-soft topological spaces defined by separation axioms, Mathematics, 10 (2022), 1–18. https://doi.org/10.3390/math10234488 doi: 10.3390/math10234488
    [42] T. M. Al-shami, M. E. El-Shafei, Two new types of separation axioms on supra soft separation spaces, Demonstr. Math., 52 (2019), 147–165. https://doi.org/10.1515/dema-2019-0016 doi: 10.1515/dema-2019-0016
    [43] L. Lincy, A. Kalaichelvi, supra soft regular closed sets and supra soft regular continuity, Int. J. Pure Appl. Math., 119 (2018), 1075–1079.
    [44] Z. A. Ameen, M. H. Alqahtani, Baire category soft sets and their symmetric local properties, Symmetry, 15 (2023), 1810. https://doi.org/10.3390/sym15101810 doi: 10.3390/sym15101810
    [45] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, Soft semi separation axioms and irresolute soft functions, Ann. Fuzzy Math. Inform., 8 (2014), 305–318. https://doi.org/10.12785/amis/080524 doi: 10.12785/amis/080524
    [46] A. Alpers, Digital topology: Regular sets and root images of the cross-median filter, J. Math. Imaging Vis., 17 (2002), 7–14.
    [47] A. M. Kozae, M. Shokry, M. Zidan, Supra topologies for digital plane, AASCIT Commun., 3 (2016), 1–10.
    [48] T. M. Al-shami, I. Alshammari, Rough sets models inspired by supra-topology structures, Artif. Intell. Rev., 56 (2023), 6855–6883. https://doi.org/10.1007/s10462-022-10346-7 doi: 10.1007/s10462-022-10346-7
    [49] S. Al Ghour, J. Al-Mufarrij, Between soft complete continuity and soft somewhat-continuity, Symmetry, 15 (2023), 2056. https://doi.org/10.3390/sym15112056 doi: 10.3390/sym15112056
    [50] A. A. Azzam, Z. A. Ameen, T. M. Al-shami, M. E. El-Shafei, Generating soft topologies via soft set operators, Symmetry, 14 (2022), 914. https://doi.org/10.3390/sym14050914 doi: 10.3390/sym14050914
    [51] T. M. Al-shami, A. Mhemdi, Approximation operators and accuracy measures of rough sets from an infra-topology view, Soft Comput., 27 (2023), 1317–1330. https://doi.org/10.1007/s00500-022-07627-2 doi: 10.1007/s00500-022-07627-2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1014) PDF downloads(87) Cited by(4)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog