Research article Special Issues

Numerical simulation of Suliciu relaxation model via an mR scheme

  • Received: 12 September 2023 Revised: 09 December 2023 Accepted: 03 January 2024 Published: 06 February 2024
  • MSC : 35L65, 35L67, 65M08, 65M12

  • We suggest a group of reliable and efficient finite volume techniques for solving the Suliciu relaxation model numerically. Namely, we have developed the modified Rusanov (mR) method to solve this model. This system is divided into two parts, the first of which is dependent on a local parameter that allows for diffusion control. The conservation equation is recovered in stage two. One of the key characteristics of the mR scheme is its ability to calculate the numerical flux equivalent to the solution's real state in the absence of the Riemann solution. Several numerical examples are considered. These examples indicate the mR scheme's high resolution and highlight its ability to deliver correct results for the Suliciu relaxation model. A variety of additional models in developed physics and applied science can be solved by using the mR method.

    Citation: Kamel Mohamed, Abdulhamed Alsisi. Numerical simulation of Suliciu relaxation model via an mR scheme[J]. AIMS Mathematics, 2024, 9(3): 6513-6527. doi: 10.3934/math.2024317

    Related Papers:

  • We suggest a group of reliable and efficient finite volume techniques for solving the Suliciu relaxation model numerically. Namely, we have developed the modified Rusanov (mR) method to solve this model. This system is divided into two parts, the first of which is dependent on a local parameter that allows for diffusion control. The conservation equation is recovered in stage two. One of the key characteristics of the mR scheme is its ability to calculate the numerical flux equivalent to the solution's real state in the absence of the Riemann solution. Several numerical examples are considered. These examples indicate the mR scheme's high resolution and highlight its ability to deliver correct results for the Suliciu relaxation model. A variety of additional models in developed physics and applied science can be solved by using the mR method.



    加载中


    [1] J. Smoller, Shock waves and reaction-diffusion equations, New York: Springer, 1994. https://doi.org/10.1007/978-1-4612-0873-0
    [2] R. J. LeVeque, Numerical methods for conservation laws, Basel: Birkhäuser, 1990. https://doi.org/10.1007/978-3-0348-5116-9
    [3] L. C. Evans, Partial differential equations, American Mathematical Society, 1998.
    [4] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics, Berlin, Heidelberg: Springer, 1997. https://doi.org/10.1007/978-3-662-03490-3
    [5] M. A. E. Abdelrahman, On the shallow water equations, Z. Naturforsch. A, 72 (2017), 873–879. https://doi.org/10.1515/zna-2017-0146 doi: 10.1515/zna-2017-0146
    [6] Y. Y. Zhang, Y. Zhang, The Riemann problem for the Suliciu relaxation system with the double-coefficient Coulomb-like friction terms, Int. J. Non-Linear Mech., 116 (2019), 200–210. https://doi.org/10.1016/j.ijnonlinmec.2019.07.004 doi: 10.1016/j.ijnonlinmec.2019.07.004
    [7] M. A. E. Abdelrahman, Cone-grid scheme for solving hyperbolic systems of conservation laws and one application, Comput. Appl. Math., 37 (2018), 3503–3513. https://doi.org/10.1007/s40314-017-0527-9 doi: 10.1007/s40314-017-0527-9
    [8] H. Kalisch, V. Teyekpiti, Hydraulic jumps on shear flows with constant vorticity, Eur. J. Mech. B/Fluids, 72 (2018), 594–600. https://doi.org/10.1016/j.euromechflu.2018.08.005 doi: 10.1016/j.euromechflu.2018.08.005
    [9] K. Mohamed, H. A. Alkhidhr, M. A. E. Abdelrahman, The NHRS scheme for the Chaplygin gas model in one and two dimensions, AIMS Math., 7 (2022), 17785–17801. https://doi.org/10.3934/math.2022979 doi: 10.3934/math.2022979
    [10] S. Frassu, G. Viglialoro, Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent, Nonlinear Anal., 213 (2021), 112505. https://doi.org/10.1016/j.na.2021.112505 doi: 10.1016/j.na.2021.112505
    [11] T. X. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 86. https://doi.org/10.1007/s00033-019-1130-2 doi: 10.1007/s00033-019-1130-2
    [12] J. Britton, Y. L. Xing, High order still-water and moving-water equilibria preserving discontinuous Galerkin methods for the Ripa model, J. Sci. Comput., 82 (2020), 30. https://doi.org/10.1007/s10915-020-01134-y doi: 10.1007/s10915-020-01134-y
    [13] K. Mohamed, M. A. E. Abdelrahman, The NHRS scheme for the two models of traffic flow, Comput. Appl. Math., 42 (2023), 53. https://doi.org/10.1007/s40314-022-02172-y doi: 10.1007/s40314-022-02172-y
    [14] A. Rehman, I. Ali, S. Zia, S. Qamar, Well-balanced finite volume multi-resolution schemes for solving the Ripa models, Adv. Mech. Eng., 13 (2021), 1–16. https://doi.org/10.1177/16878140211003418 doi: 10.1177/16878140211003418
    [15] K. Mohamed, M. A. E. Abdelrahman, The modified Rusanov scheme for solving the ultra-relativistic Euler equations, Eur. J. Mech. B/Fluids, 90 (2021), 89–98. https://doi.org/10.1016/j.euromechflu.2021.07.014 doi: 10.1016/j.euromechflu.2021.07.014
    [16] F. Bouchut, S. Boyaval, A new model for shallow viscoelastic fluids, Math. Models Methods Appl. Sci., 23 (2013), 1479–1526. https://doi.org/10.1142/S0218202513500140 doi: 10.1142/S0218202513500140
    [17] I. Suliciu, On modelling phase transitions by means of rate-type constitutive equations. Shock wave structure, Int. J. Eng. Sci., 28 (1990), 829–841. https://doi.org/10.1016/0020-7225(90)90028-H doi: 10.1016/0020-7225(90)90028-H
    [18] R. De la Cruz, J. Galvis, J. C. Juajibioy, L. Rendon, Delta shock wave for the Suliciu relaxation system, Adv. Math. Phys., 2014 (2014), 1–11. https://doi.org/10.1155/2014/35434920 doi: 10.1155/2014/35434920
    [19] T. Jin, Y. G. Zhu, Y. D. Shu, J. Cao, H. Y. Yan, D. P. Jiang, Uncertain optimal control problem with the first hitting time objective and application to a portfolio selection model, J. Intell. Fuzzy Syst., 44 (2023), 1585–1599. https://doi.org/10.3233/jifs-222041 doi: 10.3233/jifs-222041
    [20] T. Jin, F. Z. Li, H. J. Peng, B. Li, D. P. Jiang, Uncertain barrier swaption pricing problem based on the fractional differential equation in Caputo sense, Soft Comput., 27 (2023), 11587–11602. https://doi.org/10.1007/s00500-023-08153-5 doi: 10.1007/s00500-023-08153-5
    [21] K. Mohamed, Simulation numérique en volume finis, de problémes d'écoulements multidimensionnels raides, par un schéma de flux á deux pas, University of Paris 13, 2005.
    [22] K. Mohamed, M. Seaid, M. Zahri, A finite volume method for scalar conservation laws with stochastic time-space dependent flux function, J. Comput. Appl. Math., 237 (2013), 614–632. https://doi.org/10.1016/j.cam.2012.07.014 doi: 10.1016/j.cam.2012.07.014
    [23] K. Mohamed, F. Benkhaldoun, A modified Rusanov scheme for shallow water equations with topography and two phase flows, Eur. Phys. J. Plus, 131 (2016), 207. https://doi.org/10.1140/epjp/i2016-16207-3 doi: 10.1140/epjp/i2016-16207-3
    [24] K. Mohamed, A finite volume method for numerical simulation of shallow water models with porosity, Comput. Fluids, 104 (2014), 9–19. https://doi.org/10.1016/j.compfluid.2014.07.020 doi: 10.1016/j.compfluid.2014.07.020
    [25] K. Mohamed, S. Sahmim, F. Benkhaldoun, M. A. E. Abdelrahman, Some recent finite volume schemes for one and two layers shallow water equations with variable density, Math. Methods Appl. Sci., 46 (2023), 12979–12995. https://doi.org/10.1002/mma.9227 doi: 10.1002/mma.9227
    [26] M. A. E. Abdelrahman, H. A. Alkhidhr, K. Mohamed, Simulating isothermal Euler model with non-vacuum initial data via mR scheme, J. Low Freq. Noise Vibration Active Control, 41 (2022), 1466–1477. https://doi.org/10.1177/14613484221105147 doi: 10.1177/14613484221105147
    [27] K. Mohamed, S. Sahmim, M. A. E. Abdelrahman, A predictor-corrector scheme for simulation of two-phase granular flows over a moved bed with a variable topography, Eur. J. Mech. B/Fluids, 96 (2022), 39–50. https://doi.org/10.1016/j.euromechflu.2022.07.001 doi: 10.1016/j.euromechflu.2022.07.001
    [28] G. Carbou, B. Hanouzet, R. Natalini, Semilinear behavior for totally linearly degenerate hyperbolic systems with relaxation, J. Differ. Equ., 246 (2009), 291–319. https://doi.org/10.1016/j.jde.2008.05.015 doi: 10.1016/j.jde.2008.05.015
    [29] T. T. Chen, A. F. Qu, Z. Wang, The two-dimensional Riemann problem for isentropic Chaplygin gas, Acta Math. Sci. Ser. A, 37 (2017), 1053–1061.
    [30] Q. Wang, J. Q. Zhang, H. C. Yang, Two dimensional Riemann-type problem and shock diffraction for the Chaplygin gas, Appl. Math. Lett., 101 (2020), 106046. https://doi.org/10.1016/j.aml.2019.106046 doi: 10.1016/j.aml.2019.106046
    [31] P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21 (1984), 995–1011.
    [32] B. van Leer, Towards the ultimate conservative difference schemes. V. A second-order Ssequal to Godunov's method, J. Comput. Phys., 32 (1979), 101–136. https://doi.org/10.1016/0021-9991(79)90145-1 doi: 10.1016/0021-9991(79)90145-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(712) PDF downloads(64) Cited by(1)

Article outline

Figures and Tables

Figures(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog