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Abstract: We suggest a group of reliable and efficient finite volume techniques for solving the Suliciu
relaxation model numerically. Namely, we have developed the modified Rusanov (mR) method to solve
this model. This system is divided into two parts, the first of which is dependent on a local parameter
that allows for diffusion control. The conservation equation is recovered in stage two. One of the key
characteristics of the mR scheme is its ability to calculate the numerical flux equivalent to the solution’s
real state in the absence of the Riemann solution. Several numerical examples are considered. These
examples indicate the mR scheme’s high resolution and highlight its ability to deliver correct results for
the Suliciu relaxation model. A variety of additional models in developed physics and applied science
can be solved by using the mR method.
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1. Introduction

Hyperbolic conservation laws serve critical roles in the development of mathematical models for
several natural processes in practical science. The form of the nonlinear systems of hyperbolic
conservation laws is given by

Wt + F(W)x = 0, (1.1)

where W = (W1, ...,Wn) and F(W) = (F1(W), ...,Fn(W)) represent the conservative variable and
physical flux respectively. The corresponding quasilinear system of system (1.1) is given by

Wt + A(W)Wx = 0, A(W) = F′(W).

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024317


6514

System (1.1) is strictly hyperbolic if the matrix A(W) has n diverse real eigenvalues [1]:

λ1 < λ2 < ... < λn,

and n linearly independent corresponding right eigenvectors:

γ1, γ2, ..., γn.

Because conservation laws may have discontinuous solutions, they provide a significant theoretical and
numerical problem [1, 2]. An i-characteristic field is genuinely nonlinear if

∇Wλi(W) · γi(W) , 0,

and linearly degenerate if the following holds:

∇Wλi(W) · ri(W) = 0.

For a detailed discussion of the hyperbolic conservation law hypothesis, see [1–4]. The investigations
of the initial value problems corresponding to Eq (1.1) produce very vital features in natural science,
such as the shallow water model [5], Suliciu relaxation model [6], phonon-Bose model [7], Brio
model [8], Chaplygin gas model [9] and many others. The highly significant conservation law is
actually hidden behind a number of mathematical models [10, 11]. The development of numerical
simulations has recently become one of the most important methods to better understand systems of
hyperbolic conservation laws [12–15]. Nonlinear hyperbolic systems of coupled nonlinear equations
may represent many flow fields including wave events. The Suliciu relaxation model is one of the most
well known. This model has been extensively discussed due to its considerable physical basis and
variety of useful applications [16–18].

Many applications depend on the modeling of viscoelastic materials and fluids. A viscoelastic
fluid, specifically, is a material that, when deformed, demonstrates both viscous and elastic properties.
Another significant feature of viscoelastic materials is that their mechanical characteristics are affected
by the rate at which they are distorted. Viscoelastic fluids with significant applications include
unset cement, gelatin, asphalt, latex paint, and many others [6]. The rheological reaction of such
viscoelastic fluids can be quite complex. Recently, scholars have shown that model uncertainties can
be evaluated by contrasting them with outcomes from tests and in-service experiences, or with other,
more sophisticated approaches [19, 20]. When a decision-maker believes that the model that they are
using is an approximation of the “correct” reference model rather than the ideal means of describing
the future states of the world, model uncertainty elements are introduced.

In the ongoing research, we are developing the modified Rusanov (mR) method to solve the
Suliciu relaxation model in one dimension of space. This strategy has stages for predictors and
correctors [21–27]. The numerical diffusion control parameter in the first stage is based on the theory
of Riemann invariants and limiters. The balanced conservation equation is recovered in the second
stage. The scheme’s stability analysis indicates that the scheme’s order is determined by the value
of the control parameter [27]. In most common schemes, Riemann solutions were used to calculate
the numerical flux. The numerical flux was calculated by using Riemann solutions in the majority of
typical schemes. In contrast to earlier schemes, the mR scheme has the intriguing ability of evaluating
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the numerical flux in the absence of the Riemann solution. This scheme, in fact, can be used as a box
solver for many different conservation law models.

The structure of the article is as follows. Section 2 introduces the mathematical Suliciu relaxation
model. Section 3 presents the structure of the mR technique to solve the 1D Suliciu relaxation
model. Section 4 includes numerous numerical test cases to investigate the wave creation processes.
Conclusions and observations about the current results are presented in Section 5.

2. Mathematical model

The Suliciu relaxation model [6,16–18,28] clarifies the following information about the viscoelastic
shallow fluid:

∂ρ

∂t
+
∂ρu
∂x
= 0,

∂ρu
∂t
+
∂(ρu2 + s2v)
∂x

= 0,

∂ρv
∂t
+
∂(ρuv + u)
∂x

= 0 ,

(2.1)

where ρ ≥ 0 displays the fluid’s layer depth, u is the horizontal speed, s > 0 is associated
with the stress tensor, v = π

s2 is the new parameter related to pressure, and π represents the relaxed
pressure. As a relaxation for the isentropic Chaplygin gas dynamics system, the following model can
be utilized [29, 30]:

∂ρ

∂t
+
∂ρu
∂x
= 0,

∂ρu
∂t
+
∂(ρu2 + P)
∂x

= 0,
(2.2)

where ρ > 0 represents the density of the gas u represents the speed, and the state equation gives the
pressure P = − s2

ρ
with the constant s > 0. We rewrite system (2.1) as follows:

∂W

∂t
+
∂F
∂x
= 0, (2.3)

W =


ρ

ρu
ρv

 , F(W) =


ρu

ρu2 + s2v
ρuv + u

 .
System (2.1) is strictly hyperbolic since it has the following eigenvalues:

λ1 = u −
s
ρ
, λ2 = u, λ3 = u +

s
ρ
. (2.4)

The eigenvectors of system (2.1) are

γ1 =
(
ρ2,−s, 1

)T
, γ2 = (1, 0, 0)T , γ3 =

(
ρ2, s, 1

)T
.

System (2.1) is linearly degenerate because ∇λ1 · γ1 = ∇λ2 · γ2 = ∇λ3 · γ3 = 0. The corresponding
Riemann invariants are given by

R1 = s2 v − s u, R2 = v +
1
ρ
, R3 = s2 v + s u. (2.5)
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3. The mR scheme

Here, we describe the mR scheme by integrating Eq (2.3) over the domain [tn, tn+1] × [xi− 1
2
, xi+ 1

2
],

given as follows:

Wn+1
i =Wn

i −
∆t
∆x

(
F
(
Wn

i+ 1
2

)
− F
(
Wn

i− 1
2

))
, (3.1)

whereWn
i is the solution’s average ofW over the interval [xi− 1

2
, xi+ 1

2
] at time tn, i.e.,

Wn
i =

1
∆x

∫ xi+ 1
2

xi− 1
2

W(tn, x) dx,

where F(Wn
i± 1

2
) denotes the numerical flux at time tn and given a space x = xi± 1

2
. In order to construct

the numerical fluxes, F
(
Wn

i± 1
2

)
in the finite volume discretization given by Eq (3.1), Riemann problems

at the cell interfaces xi± 1
2

must be solved. According to the following initial condition, we assume that
the self-similar solution to the Riemann problem associated with Eq (2.3) exists:

W(x, 0) =

WL, if x < 0,

WR, if x > 0,
(3.2)

and it is provided by

W(t, x) = Rs

( x
t
,WL,WR

)
,

where Rs denotes the Riemann solution, which must be calculated precisely or approximated. Thus, at
the cell interface x = xi± 1

2
, the intermediate stateWn

i± 1
2

in Eq (3.1) is defined as follows:

Wn
i+ 1

2
= Rs

(
0,Wn

i ,W
n
i+1
)
. (3.3)

From a computational viewpoint, the process is very demanding and may limit the use of the scheme
for which Riemann solutions are challenging to approximate. In order to get around these numerical
challenges and approximateWn

i+ 1
2
, we modify a Rusanov scheme that was proposed in [21–26]. In order

to create Wn
i+ 1

2
for use in the corrector step given by Eq (3.1), we integrate Eq (2.3) over the domain

[tn, tn+ θ
n
i+ 1

2
]× [x−, x+]; see Figure 1. Here,Wn

i± 1
2

is an approximation of the Riemann solution Rs based
on the control volume [x−, x+] at tn + θ

n
i+ 1

2
. Consequently, we arrive at the intermediate state as follows:

∫ x+

x−
W(tn + θ

n
i+ 1

2
, x) dx = ∆x−Wn

i + ∆x+Wn
i+1 − θ

n
i+ 1

2

(
F(Wn

i+1) − F(Wn
i )
)
, (3.4)

where the distance measures ∆x− and ∆x+ are given by

∆x− =
∣∣∣∣x− − xi+ 1

2

∣∣∣∣ , ∆x+ =
∣∣∣∣x+ − xi+ 1

2

∣∣∣∣ .
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Figure 1. The control volume depicting the mR scheme.

If we set x− = xi and x+ = xi+1 in Eq (3.4), then the predictor stage is given by

Wn
i+ 1

2
=

1
2
(
Wn

i +W
n
i+1
)
−

θn
i+ 1

2

∆x

(
F(Wn

i+1) − F(Wn
i )
)
, (3.5)

whereWn
i+ 1

2
is the solution’s average ofW over the interval [tn, tn + θ

n
i+ 1

2
] × [xi, xi+1] and is described as

Wn
i+ 1

2
=

1
∆x

∫ xi+1

xi

W(x, tn + θ
n
i+ 1

2
)dx. (3.6)

The parameter θn
i+ 1

2
must be chosen to complete the implementation of the proposed finite volume

scheme; the choice of the parameter θn
i+ 1

2
depends on the stability analysis scheme; for more

information, see [21]; we choose the variable θn
i+ 1

2
as follows:

θn
i+ 1

2
= αn

i+ 1
2

∆x
2S n

i+ 1
2

, (3.7)

where αn
i+ 1

2
is a local parameter that needs to be determined locally, and S n

i+ 1
2

is the local Rusanov
velocity defined as

S n
i+ 1

2
= max

k=1,...,K
(max(| λn

k,i |, | λ
n
k,i+1 |)), (3.8)

where λn
k,i denotes the k-th eigenvalues in Eq (2.4). The predictor stage defined in Eq (3.5) can then be

rewritten.

Wn
i+ 1

2
=

1
2

(Wn
i +W

n
i+1) −

αn
i+ 1

2

2S n
j+ 1

2

[
F(Wn

i+1) − F(Wn
i )
]
. (3.9)

It is clear that when αn
i+ 1

2
= ∆t
∆xS n

j+ 1
2

the Lax-Wendroff method is reduced to the proposed finite volume
scheme [2]; also, when αn

i+ 1
2
= 1 in the linear case, the proposed scheme is reduced to the upwind

scheme. Another option for the slopes is that αn
i+ 1

2
can be written as

αn
i+ 1

2
=
(
1 − Φ

(
ri+ 1

2

)) S n
i+ 1

2

sn
i+ 1

2

+
∆t
∆x

S n
i+ 1

2
Φ
(
ri+ 1

2

)
, (3.10)
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where sn
i+ 1

2
= min

k=1,...,K
(max(| λn

k,i |, | λ
n
k,i+1 |)) , Φi+ 1

2
= Φ
(
ri+ 1

2

)
is a suitable limiter that is determined

by a flux limiter function Φ acting on a quantity that measures the ratio ri+ 1
2
=
Wi+1−q−Wi−q

Wi+1−Wi
and q =

sign
[
F′(Wn

i+ 1
2
)
]

of the upwind change to the local position through the use of the Riemann invariants
defined in Eq (2.5), see for instance [31]. Here, the minmod function is defined by

Φ(r) = max (0,min (1, r)) , (3.11)

and the van Albada function

Φ(r) =
r + r2

1 + r2 (3.12)

are used; see [2, 32] for the limiter functions that allow for the use of van Leer or superbee functions.
The mR scheme for Eq (2.3) is finally written as follows:


Wn

i+ 1
2
=

1
2

(Wn
i +W

n
i+1) −

αn
i+ 1

2

2S n
j+ 1

2

[
F(Wn

i+1) − F(Wn
i )
]
,

Wn+1
i =Wn

i − rn
[
F
(
Wn

i+ 1
2

)
− F
(
Wn

i− 1
2

)]
.

(3.13)

4. Numerical results

We introduce six numerical test cases through the use of the mR, Rusanov, Lax-Friedrichs, and
Harten-Lax-van Leer (HLL) schemes for numerical simulation of the suliciu relaxation system. We
show the accuracy of the proposed mR method. For all computations the domain is [−1, 1], whereas
we discretize with 200 grid points and the final time is t = 0.1s. We compare the results of the three
schemes with the reference solution obtained via the classical Rusanov scheme on the very fine mesh
of 20000 grid points. We chose the condition of stability [21] as follows:

∆t = CFL
∆x

max
i

(∣∣∣∣∣αn
i+ 1

2
S n

i+ 1
2

∣∣∣∣∣) , (4.1)

where CFL = 0.9 in all test cases, except test case 4, where we take it as 0.5.

4.1. Test case 1

In this test case, while the solution is represented by a delta shock and a rarefaction wave moving
from left to right in Figures 2 and 3, we take into consideration the following initial conditions:

(ρ, u, v) =

(9, 5, 14
5 ), if x ≤ 0,

(1, 3, 2), if x ≥ 0.
(4.2)
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Figure 2. Density ρ (left) and u (right).

Figure 3. Velocity v (left) and αn and Riemann invariants (right).

4.2. Test case 2

In this test case, while the solution is represented by a rarefaction and shock wave continuing from
left to right in Figures 4 and 5, we take into consideration the following initial conditions:

(ρ, u, v) =

(7, 2, 2), if x ≤ 0,

(5, 7, 2), if x ≥ 0.
(4.3)

AIMS Mathematics Volume 9, Issue 3, 6513–6527.



6520

Figure 4. Density ρ (left) and u (right).

Figure 5. Velocity v (left) and αn and Riemann invariants (right).

4.3. Test case 3

In this test case, the solution consists of a shock wave proceeding from left to right and a rarefaction
continuing from right to left; see Figures 6 and 7, where the initial conditions are as follows:

(ρ, u, v) =

(1, 0, 1), if x ≤ 0,

(0.25, 0, 0), if x ≥ 0.
(4.4)
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Figure 6. Density ρ (left) and u (right).

Figure 7. Velocity v (left) and αn and Riemann invariants (right).

4.4. Test case 4

In this test case, while the solution is a pair of rarefaction waves traveling from left to right, we take
into consideration the following starting points; see Figures 8 and 9.

(ρ, u, v) =

(1, 3, 0.5), if x ≤ 0,

(1.5, 3, 2), if x ≥ 0.
(4.5)
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Figure 8. Density ρ (upper) and u (lower).

Figure 9. Velocity u (left) and αn and Riemann invariants (right).

AIMS Mathematics Volume 9, Issue 3, 6513–6527.
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4.5. Test case 5

In this test case, we consider the following initial conditions, while the solution consists of a
rarefaction wave and shock wave; see Figures 10 and 11.

(ρ, u, v) =

(0.5, 2, 1), if x ≤ 0,
(0.6, 0, 1), if x ≥ 0.

(4.6)

Figure 10. Density ρ (left) and u (right).

Figure 11. Velocity v (left) and αn and Riemann invariants (right).
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4.6. Test case 6

In this test case, the solution consists of a rarefaction wave and shock wave, as shown in Figures 12
and 13, where the initial conditions are as follows:

(ρ, u, v) =

(0.3, 0, 0.6), if x ≤ 0,

(0.6, 0, 0.3), if x ≥ 0.
(4.7)

Figure 12. Density ρ (left) and u (right).

Figure 13. Velocity v (left) and αn and Riemann invariants (right).

In summary, we have reported six numerical test cases corresponding to the Suliciu relaxation
model. We noticed that the mR scheme is more accurate than the Rusanov scheme, HLL scheme and
Lax-Friedrichs schemes. We compared these schemes with the reference solution on the very fine
mesh of 20000 grid points. The accuracy of the HLL scheme is better than that of the Rusanov scheme

AIMS Mathematics Volume 9, Issue 3, 6513–6527.
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and Lax-Friedrichs scheme. Indeed, the presented four schemes are able to capture the rarefaction and
shock waves.

5. Conclusions

The mR scheme was implemented to solve 1D Suliciu relaxation model. This scheme is capable of
precisely capturing non-continuous profiles of hyperbolic systems of conservation laws and avoiding
numerical diffusion in the solution. Various numerical examples have been provided to solve the
Suliciu relaxation model through the use of the mR, Rusanov, Lax-Friedrichs, and HLL methods, as
well as analytical solutions. The results demonstrate that the mR scheme offers remarkable shock
resolution with high precision in the smooth zone and that there are no nonphysical oscillations
around the shock locations. The simulations presented demonstrated the excellent resolution of the
mR technique and confirmed its capabilities and effectiveness in dealing with such models.

Use of AI tools declaration

The authors declare that they have not used artificial intelligence tools in the creation of this article.

Acknowledgments

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of
Education in Saudi Arabia for funding this research work through the project number 445-9-582.

Conflict of interest

The authors declare that they have no competing interests.

References

1. J. Smoller, Shock waves and reaction-diffusion equations, New York: Springer, 1994.
https://doi.org/10.1007/978-1-4612-0873-0

2. R. J. LeVeque, Numerical methods for conservation laws, Basel: Birkhäuser, 1990.
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