Research article

Pivotal-based inference for a Pareto distribution under the adaptive progressive Type-II censoring scheme

  • Received: 26 October 2023 Revised: 04 January 2024 Accepted: 10 January 2024 Published: 01 February 2024
  • MSC : 62F10

  • This paper proposes an inference approach based on a pivotal quantity under the adaptive progressive Type-II censoring scheme. To exemplify the proposed methodology, an extensively employed distribution, a Pareto distribution, is utilized. This distribution has limitations in estimating confidence intervals for unknown parameters from classical methods such as the maximum likelihood and bootstrap methods. For example, in the maximum likelihood method, the asymptotic variance-covariance matrix does not always exist. In addition, both classical methods can yield confidence intervals that do not satisfy nominal levels when a sample size is not large enough. Our approach resolves these limitations by allowing us to construct exact intervals for unknown parameters with computational simplicity. Aside from this, the proposed approach leads to closed-form estimators with properties such as unbiasedness and consistency. To verify the validity of the proposed methodology, two approaches, a Monte Carlo simulation and a real-world data analysis, are conducted. The simulation testifies to the superior performance of the proposed methodology as compared to the maximum likelihood method, and the real-world data analysis examines the applicability and scalability of the proposed methodology.

    Citation: Young Eun Jeon, Suk-Bok Kang, Jung-In Seo. Pivotal-based inference for a Pareto distribution under the adaptive progressive Type-II censoring scheme[J]. AIMS Mathematics, 2024, 9(3): 6041-6059. doi: 10.3934/math.2024295

    Related Papers:

  • This paper proposes an inference approach based on a pivotal quantity under the adaptive progressive Type-II censoring scheme. To exemplify the proposed methodology, an extensively employed distribution, a Pareto distribution, is utilized. This distribution has limitations in estimating confidence intervals for unknown parameters from classical methods such as the maximum likelihood and bootstrap methods. For example, in the maximum likelihood method, the asymptotic variance-covariance matrix does not always exist. In addition, both classical methods can yield confidence intervals that do not satisfy nominal levels when a sample size is not large enough. Our approach resolves these limitations by allowing us to construct exact intervals for unknown parameters with computational simplicity. Aside from this, the proposed approach leads to closed-form estimators with properties such as unbiasedness and consistency. To verify the validity of the proposed methodology, two approaches, a Monte Carlo simulation and a real-world data analysis, are conducted. The simulation testifies to the superior performance of the proposed methodology as compared to the maximum likelihood method, and the real-world data analysis examines the applicability and scalability of the proposed methodology.



    加载中


    [1] M. Basirat, S. Baratpour, J. Ahmadi, Statistical inferences for stress-strength in the proportional hazard models based on progressive Type-II censored samples, J. Stat. Comput. Sim., 85 (2015), 431–449. https://doi.org/10.1080/00949655.2013.824449 doi: 10.1080/00949655.2013.824449
    [2] A. S. Nik, A. Asgharzadeh, M. Z. Raqab, Estimation and prediction for a new Pareto-type distribution under progressive Type-II censoring, Math. Comput. Simulat., 190 (2021), 508–530. https://doi.org/10.1016/j.matcom.2021.06.005 doi: 10.1016/j.matcom.2021.06.005
    [3] S. Dey, L. Wang, M. Nassar, Inference on Nadarajah-Haghighi distribution with constant stress partially accelerated life tests under progressive Type-II censoring, J. Appl. Stat., 49 (2022), 2891–2912. https://doi.org/10.1080/02664763.2021.1928014 doi: 10.1080/02664763.2021.1928014
    [4] B. X. Wang, K. Yu, M. C. Jones, Inference under progressively Type-II right-censored sampling for certain lifetime distributions, Technometrics, 52 (2010), 453–460. https://doi.org/10.1198/TECH.2010.08210 doi: 10.1198/TECH.2010.08210
    [5] J. I. Seo, S. B. Kang, Pivotal inference for the scaled half logistic distribution based on progressively Type-II censored samples, Stat. Probabil. Lett., 104 (2015), 109–116. https://doi.org/10.1016/j.spl.2015.05.011 doi: 10.1016/j.spl.2015.05.011
    [6] J. I. Seo, S. B. Kang, H. Y. Kim, New approach for analysis of progressive Type-II censored data from the Pareto distribution, Commun. Stat. Appl. Met., 25 (2018), 569–575. https://doi.org/10.29220/CSAM.2018.25.5.569 doi: 10.29220/CSAM.2018.25.5.569
    [7] H. L. Lu, S. H. Tao, The estimation of Pareto distribution by a weighted least square method, Qual. Quant., 41 (2007), 913–926. https://doi.org/10.1007/s11135-007-9100-8 doi: 10.1007/s11135-007-9100-8
    [8] H. K. T. Ng, D. Kundu, P. S. Chan, Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme, Nav. Res. Log., 56 (2009), 687–698. https://doi.org/10.1002/nav.20371 doi: 10.1002/nav.20371
    [9] M. M. A. Sobhi, A. A. Soliman, Estimation for the exponentiated Weibull model with adaptive Type-II progressive censored schemes, Appl. Math. Model., 40 (2016), 1180–1192. https://doi.org/10.1016/j.apm.2015.06.022 doi: 10.1016/j.apm.2015.06.022
    [10] Z. S. Ye, P. S. Chan, M. Xie, H. K. T. Ng, Statistical inference for the extreme value distribution under adaptive Type-II progressive censoring schemes, J. Stat. Comput. Sim., 84 (2014), 1099–1114. https://doi.org/10.1080/00949655.2012.740481 doi: 10.1080/00949655.2012.740481
    [11] R. Mohan, M. Chacko, Estimation of parameters of Kumaraswamy-exponential distribution based on adaptive Type-II progressive censored schemes, J. Stat. Comput. Sim., 91 (2021), 81–107. https://doi.org/10.1080/00949655.2020.1807547 doi: 10.1080/00949655.2020.1807547
    [12] Z. Chen, Joint confidence region for the parameters of Pareto distribution, Metrika, 44 (1996), 191–197. https://doi.org/10.1007/BF02614065 doi: 10.1007/BF02614065
    [13] S. F. Wu, Interval estimation for a Pareto distribution based on a doubly Type-II censored sample, Comput. Stat. Data An., 52 (2008), 3779–3788. https://doi.org/10.1016/j.csda.2007.12.015 doi: 10.1016/j.csda.2007.12.015
    [14] J. Zhang, Simplification of joint confidence regions for the parameters of the Pareto distribution, Comput. Stat., 28 (2013), 1453–1462. https://doi.org/10.1007/s00180-012-0354-9 doi: 10.1007/s00180-012-0354-9
    [15] J. H. T. Kim, S. Ahn, S. Ahn, Parameter estimation of the Pareto distribution using a pivotal quantity, J. Korean Stat. Soc., 46 (2017), 438–450. https://doi.org/10.1016/j.jkss.2017.01.004 doi: 10.1016/j.jkss.2017.01.004
    [16] M. M. Mohie El-Din, A. R. Shafay, M. Nagy, Statistical inference under adaptive progressive censoring scheme, Comput. Stat., 33 (2018), 31–74. https://doi.org/10.1007/s00180-017-0745-z doi: 10.1007/s00180-017-0745-z
    [17] E. Cramer, G. Iliopoulos, Adaptive progressive Type-II censoring, Test, 19 (2010), 342–358. https://doi.org/10.1007/s11749-009-0167-5 doi: 10.1007/s11749-009-0167-5
    [18] A. F. Karr, Probability, New York: Springer-Verlag, 1993.
    [19] E. Slutsky, Über stochastische asymptoten und grenzwerte, Metron, 5 (1925), 3–89.
    [20] S. Weerahandi, Generalized confidence intervals, In: Exact statistical methods for data analysis, New York: Springer, 1995,143–168. https://doi.org/10.1007/978-1-4612-0825-9_6
    [21] N. Balakrishnan, R. A. Sandhu, A simple simulational algorithm for generating progressive Type-II censored samples, Am. Stat., 49 (1995), 229–230. https://doi.org/10.1080/00031305.1995.10476150 doi: 10.1080/00031305.1995.10476150
    [22] E. M. Almetwally, R. Alharbi, D. Alnagar, E. H. Hafez, A new inverted Topp-Leone distribution: Applications to the COVID-19 mortality rate in two different countries, Axioms, 10 (2021), 25. https://doi.org/10.3390/axioms10010025 doi: 10.3390/axioms10010025
    [23] A. S. Nik, A. Asgharzadeh, A. Baklizi, Inference based on new Pareto-type records with applications to precipitation and COVID-19 data, Stat. Optim. Inf. Comput., 11 (2023), 243–257. http://dx.doi.org/10.19139/soic-2310-5070-1591 doi: 10.19139/soic-2310-5070-1591
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(931) PDF downloads(74) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog