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Abstract: This paper proposes an inference approach based on a pivotal quantity under the adaptive
progressive Type-II censoring scheme. To exemplify the proposed methodology, an extensively
employed distribution, a Pareto distribution, is utilized. This distribution has limitations in estimating
confidence intervals for unknown parameters from classical methods such as the maximum likelihood
and bootstrap methods. For example, in the maximum likelihood method, the asymptotic variance-
covariance matrix does not always exist. In addition, both classical methods can yield confidence
intervals that do not satisfy nominal levels when a sample size is not large enough. Our approach
resolves these limitations by allowing us to construct exact intervals for unknown parameters with
computational simplicity. Aside from this, the proposed approach leads to closed-form estimators
with properties such as unbiasedness and consistency. To verify the validity of the proposed
methodology, two approaches, a Monte Carlo simulation and a real-world data analysis, are conducted.
The simulation testifies to the superior performance of the proposed methodology as compared to
the maximum likelihood method, and the real-world data analysis examines the applicability and
scalability of the proposed methodology.
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1. Introduction

In the experiments of various fields such as sciences, public health, and medicine, a proper censoring
scheme is often considered because censored data arise commonly. The most famous censoring scheme
is the progressive Type-II (PT-II) censoring scheme, where the observation number m(≤ n) and the
associated censoring scheme R = (R1, . . . ,Rm) are pre-fixed, and the Ri surviving units are randomly
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withdrawn when the ith failure arises from the experiment. The PT-II censoring scheme is attractive in
that cost and time are saved by withdrawing surviving units during the experiment. This advantage has
given significant attention to this censoring scheme in the literature [1–3]. In particular, some authors
developed inference methods based on a pivotal quantity as an alternative to the maximum likelihood
method under the PT-II censoring scheme. Wang et al. [4] proved that a pivotal approach is superior to
the maximum likelihood approach in parameter estimation of the two-parameter Weibull distribution
for a small sample size. Seo and Kang [5] discussed a pivotal-based inference for estimating a scale
parameter of the scaled half logistic distribution. They demonstrated the superiority of estimators
based on a pivotal quantity for a small sample size, compared to the maximum likelihood estimator
(MLE) and approximate MLEs. Seo et al. [6] studied an estimation method for unknown parameters
of a Pareto distribution based on the regression-type framework using a pivotal quantity by extending
the idea of Lu and Tao [7].

However, the PT-II censoring scheme has a drawback in that the total experiment time can still be
long. To overcome this issue, Ng et al. [8] proposed the use of the ideal experiment time T as an adapted
version, and adapted the PT-II censoring scheme as follows: If the mth failure arises before time T ,
then the experiment is terminated at the time Xm:m:n, which is the same as the PT-II censoring scheme.
If the mth failure arises after time T , then surviving units are not withdrawn from the experiment by
setting RL+1 = · · · = Rm−1 = 0, where L(< m − 1) is the number of observed failures until time T .

At the time of the mth failure, all remaining Rm = n − m −
L∑

i=1
Ri surviving units are withdrawn. This

censoring scheme is called the adaptive PT-II (APT-II) censoring scheme. The basic idea of the APT-II
censoring scheme is to finish the experiment as fast as possible when the experiment duration exceeds
a predetermined time T . So, this censoring scheme can save both the total experiment time and cost,
and increase the efficiency of statistical analysis. Due to this efficiency, the APT-II censoring scheme
has been discussed by some authors such as Sobhi and Soliman [9], Ye et al. [10], and Mohan and
Chacko [11].

This paper proposes an inference method based on a pivotal quantity under the APT-II censoring
scheme. For an illustration of the proposed methodology, a Pareto distribution with the following
cumulative distribution function (CDF) and probability density function is employed:

F (x; λ, θ) = 1 −
(
θ

x

)λ
(1.1)

and

f (x; λ, θ) = λθλx−(λ+1), x > θ, λ > 0, θ > 0,

respectively, where λ is the shape parameter of interest and θ is the scale parameter. The Pareto
distribution is one of the most widely used distributions to model a wide range of real-world cases
in various fields such as economics, sociology, and engineering. For example, the distribution of
income, internet traffic, and urban population is known to follow the Pareto distribution. To improve
the estimation performance of the Pareto distribution, some authors have studied the inference for
unknown parameters of this distribution by applying a pivotal quantity. Chen [12] used a pivotal
quantity to obtain a joint confidence region for unknown parameters. Wu [13] introduced a pivotal-
based method for obtaining a joint confidence region for unknown parameters under the doubly Type-
II censoring scheme. Zhang [14] provided simplified versions of Chen [12] and Wu [13] to avoid
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computational difficulties. Kim et al. [15] proposed an estimation method based on the regression-type
framework using a pivotal quantity, which provides a consistent estimator for the shape parameter.
However, despite the superiority of the pivotal-based method, Mohie El-Din et al. [16] discussed a
Bayesian approach for the Pareto distribution under the APT-II censoring scheme, and the approach
has a substantial computational burden. Alternatively, by extending a pivotal approach to the APT-II
censoring scheme, this paper proposes an inference method based on its excellent scalability, and the
superiority and applicability of the proposed method are substantiated. Significantly, this study marks a
novel approach by utilizing a pivotal-based method for the first time, aimed at estimating the unknown
parameters of the Pareto distribution within the context of the APT-II censoring scheme.

For the Pareto distribution with CDF (1.1), classical methods such as the maximum likelihood
and bootstrap methods have limitations in estimating confidence intervals (CIs) for λ and θ. The
maximum likelihood method yields not exact but approximate CIs with the burden of computing the
Fisher information matrix (FIM), and the approximate CIs do not ensure the satisfaction of the nominal
levels when a sample size is not large enough. In addition, the asymptotic variance-covariance matrix
(AVCM) of the MLEs suffers from a constraint. In the case of the bootstrap method, the CIs fail to
satisfy nominal levels. These issues are expounded in Section 2. On the other hand, the proposed
pivotal-based method not only easily leads to exact CIs (ECIs) for λ and θ without any conditions even
in a situation where a sample size is not large enough, but also provides closed-form inference results.

Furthermore, this paper introduces the generalized pivotal quantity (GPQ) under the APT-II
censoring scheme, which is applicable to the inference for functions with unknown parameters. As a
specific example, we develop a method of generating the replicated data from the marginal distribution
for the observed APT-II censored sample, inferring the distribution.

The rest of this paper is organized as follows: Section 2 proposes a pivotal-based estimation method
for the unknown parameters of the Pareto distribution under the APT-II censoring scheme. Section 3
provides an algorithm, that generates the replicated data of the observed APT-II censored sample,
based on GPQs. Section 4 conducts the Monte Carlo simulation and the real data analysis to assess the
proposed methodology. Section 5 concludes this paper.

2. Pivotal-based inference

Let X1:m:n ≤ · · · ≤ Xm:m:n be an APT-II censored sample with the censoring scheme

R∗ =


R, if Xm:m:n < T,(
R1, . . . ,RL, 0∗m−L−1, n − m −

L∑
i=1

Ri

)
, if Xm:m:n > T,

(2.1)

where 0∗m−L−1 denotes a vector of zeros of the size m − L − 1. The censoring scheme (2.1) means that
the APT-II censoring scheme is the same as the PT-II censoring scheme for Xm:m:n < T , and does not
allow the removal of experimental units by setting RL+1 = · · · = Rm−1 = 0 for Xm:m:n > T .

Suppose that the APT-II censored sample has a Pareto distribution with CDF (1.1). The
corresponding likelihood and its logarithm functions are given by

L (λ, θ) ∝ λmθλn
m∏

i=1

x−λ(1+Ri)−1
i:m:n
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and

log L (λ, θ) ∝ m log λ + λn log θ − λ
m∑

i=1

(1 + Ri) log xi:m:n, (2.2)

respectively. Since the log-likelihood function (2.2) is a monotonically increasing function
of θ, the MLE of θ is obtained as θ̂ = X1:m:n. Then, the MLE of λ is obtained as λ̂ =

m
/ ( m∑

i=1
(1 + Ri) log Xi:m:n − n log X1:m:n

)
by maximizing the log-likelihood function with θ = X1:m:n.

Note that the MLEs λ̂ and θ̂ are biased estimators. This is proved after stating Lemma 2.1. Moreover,
constructing approximate CIs based on the MLEs is straightforward due to the asymptotic normality of
the MLEs. However, this process necessitates the variance of the MLEs, which can be derived from the
following FIM, calculated using the second partial derivatives of the negative log-likelihood function:

I (λ, θ) =

E
(
−∂2 log L(λ,θ)

∂λ2

)
E

(
−∂2 log L(λ,θ)

∂λ∂θ

)
E

(
−∂2 log L(λ,θ)

∂θ∂λ

)
E

(
−∂2 log L(λ,θ)

∂θ2

)
=

(
m/λ2 −n/θ
−n/θ nλ/θ2

)
. (2.3)

By inverting the FIM (2.3), the AVCM of the MLEs λ̂ and θ̂ is obtained as

Σ̂ =

(
m/λ2 −n/θ
−n/θ nλ/θ2

)−1 ∣∣∣∣∣(λ=λ̂, θ=θ̂)

=
θ̂2λ̂

n
(
m − nλ̂

) (
nλ̂/θ̂2 n/θ̂
n/θ̂ m/λ̂2

)
, λ̂ <

m
n
. (2.4)

The diagonal elements of the AVCM (2.4) are the variances of the MLEs λ̂ and θ̂, respectively. Note
that the AVCM (2.4) does not always exist because of the constraint λ̂ < m/n. In other words, the
construction of approximate CIs is not always possible. Alternatively, we propose inference based on
the pivotal quantity under the APT-II censoring scheme.

Let

Yi:m:n = − log (1 − F (xi:m:n; λ, θ))

=λ log
(Xi:m:n

θ

)
, i = 1, . . . ,m. (2.5)

Then, Y1:m:n ≤ · · · ≤ Ym:m:n is an APT-II censored sample that has a standard exponential distribution

with mean E (Yi:m:n) =
i∑

j=1
1/Γ j, where Γ1 = n and Γ j = n −

j−1∑
k=1

(1 + Rk) for j = 2, . . . ,m. It is readily

apparent that, as the quantity (2.5) is expressed as Yi:m:n
d
= − log (1 − Ui:m:n), using the relationship

F (Xi:m:n; λ, θ) d
= Ui:m:n, where A d

= B denotes that A and B have the same distribution, and Ui:m:n is an
ith APT-II censored order statistic from a standard uniform distribution. In addition, the quantity (2.5)
induces the normalized spacings

Zi = Γi (Yi:m:n − Yi−1:m:n)
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= λΓi log
(

Xi:m:n

Xi−1:m:n

)
, i = 1, . . . ,m,

where Y0:m:n = 0. Note that Zi (i = 1, . . . ,m) are independent standard exponential random
variables [17], which leads to some pivotal quantities that play an important role in deriving estimation
equations. These pivotal quantities are provided in Lemma 2.1. Before introducing Lemma 2.1, to
simply express the frequently used distributions, we declare two notations as follows: χ2

v and F(d1, d2)
denote a χ2 distribution with v degrees of freedom and an F distribution with (d1, d2) degrees of
freedom, respectively.

Lemma 2.1. Let X1:m:n ≤ · · · ≤ Xm:m:n be an APT-II censored sample with the censoring scheme R∗

from the Pareto distribution with CDF (1.1). Then,

(a) X1(λ) = 2λ

 m∑
i=1

(1 + Ri) log Xi:m:n − n log X1:m:n

 ,
(b) F(θ) =

m∑
i=1

(1 + Ri) log Xi:m:n − n log X1:m:n

n(m − 1) log (X1:m:n/θ)
,

and

(c) X2(θ) = 2(m − 1) log

 m∑
j=1

(
1 + R j

)
log X j:m:n − n log θ


− 2

m−1∑
i=1

log

 i∑
j=1

(
1 + R j

)
log X j:m:n +

n − i∑
j=1

(
1 + R j

) log Xi:m:n − n log θ

,
which have χ2

2(m−1), F (2(m − 1), 2), and χ2
2(m−1) distributions, respectively.

Proof. (a) and (b) are clear from X1(λ) = 2
m∑

i=2
Zi and F(θ) =

(
2

m∑
i=2

Zi

/
[2(m − 1)]

) /
(2Z1/2) since Zi

(i = 1, . . . ,m) are independent standard exponential random variables as mentioned earlier. In addition,

the quantity
i∑

j=1
Z j

/ m∑
j=1

Z j (i = 1, . . . ,m − 1) are the order statistics from a standard uniform distribution

with the sample size m − 1. Then, (c) is proved from

X2(θ) = −2
m−1∑
i=1

log


i∑

j=1
Z j

m∑
j=1

Z j

.
This completes the proof. �

The following subsections provide inference results based on the pivotal quantities in Lemma 2.1.
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2.1. Point estimation

From the pivotal quantity X1(λ) in Lemma 2.1, it is easily proved that the MLE λ̂ is a biased
estimator because it has an inverse gamma distribution with parameters (m − 1, λm). Alternatively,
an estimator of λ is obtained as

λ̂u =
m − 2

m∑
i=1

(1 + Ri) log Xi:m:n − n log X1:m:n

.

Theorem 2.2. The estimator λ̂u has unbiasedness and consistency.

Proof. The estimator λ̂u has an inverse gamma distribution with parameters (m − 1, λ(m − 2)) from the
pivotal quantity X1(λ) in Lemma 2.1. This indicates E

(
λ̂u

)
= λ and Var

(
λ̂u

)
= λ2/(m−3). In addition,

the variance Var
(
λ̂u

)
converges to zero in probability as m→ ∞. This completes the proof. �

We introduce another consistent estimator for λ under the APT-II censoring scheme, which is
derived from a weighted least squares approach based on a regression-type framework using the
quantity (2.5).

Let Di:m:n = Yi:m:n − Y1:m:n (i = 2, . . . ,m). Then, its expectation is given by

E (Di:m:n) = E (Yi:m:n) − E (Y1:m:n)

=

i∑
j=1

1
Γ j
−

1
Γ1

=

i∑
j=2

1
Γ j
, i = 2, . . . ,m.

Using it, we can consider the following linear regression model:

E (Di:m:n) = λ log
(

Xi:m:n

X1:m:n

)
+ εi, i = 2, . . . ,m, (2.6)

where εi is the error term with E(εi) = 0. Note that the regression model (2.6) is a simple regression
model with no intercept and does not depend on θ. Then, the weighted least squares estimator for λ

is obtained from Eq (2.6) by minimizing the quantity
m∑

i=2
wi:m:n

[
E (Di:m:n) − λ log (Xi:m:n/X1:m:n)

]2 with

respect to λ as

λ̂w =

m∑
i=2

wi:m:nE (Di:m:n) log (Xi:m:n/X1:m:n)

m∑
i=2

wi:m:n
[
log (Xi:m:n/X1:m:n)

]2
, (2.7)

where wi:m:n is the weight of each data point and assumes that it is not an identical constant.

Theorem 2.3. Let wi:m:n = 1/Var (Di:m:n) in the estimator (2.7), where Var (Di:m:n) =
i∑

j=2
Γ−2

j , i =

2, . . . ,m. Then, the estimator λ̂w is a consistent estimator.
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Proof. The estimator λ̂w with wi:m:n = 1/Var (Di:m:n) can be written as

λ̂w = λ

m∑
i=2

Di:m:nE (Di:m:n) /Var (Di:m:n)

m∑
i=2

D2
i:m:n/Var (Di:m:n)

= λ

m∑
i=2

Q1,i:m:n +
m∑

i=2
Q3,i:m:n

m∑
i=2

Q2,i:m:n +
m∑

i=2
Q3,i:m:n

= λ

m∑
i=2

Q1,i:m:n

/
m2 +

m∑
i=2

Q3,i:m:n

/
m2

m∑
i=2

Q2,i:m:n

/
m2 +

m∑
i=2

Q3,i:m:n

/
m2
, (2.8)

where

Q1,i:m:n =
Di:m:nE (Di:m:n) − E2 (Di:m:n)

Var (Di:m:n)
,

Q2,i:m:n =
D2

i:m:n − E2 (Di:m:n)
Var (Di:m:n)

,

Q3,i:m:m =
E2 (Di:m:n)

Var (Di:m:n)
.

In Eq (2.8), the quantities
m∑

i=2
Q1,i:m:n

/
m2 and

m∑
i=2

Q2,i:m:n

/
m2 converge to zero in probability as m → ∞.

In addition, since the quantity
m∑

i=2
Q3,i:m:n

/
m2 converges to a constant in probability as m → ∞, the

fraction term in Eq (2.8) converges to 1 in probability as m → ∞. The results for these probability
convergences can be easily shown according to Seo et al. [6]. The proof in Seo et al. [6] is restated to
match our notation.

The quantities
m∑

i=2
Q1,i:m:n

/
m2 and

m∑
i=2

Q2,i:m:n

/
m2 converge in the mean to 0 since

E

∣∣∣∣∣∣ 1
m2

m∑
i=2

Q1,i:m:n

∣∣∣∣∣∣
 = 0

and

E

∣∣∣∣∣∣ 1
m2

m∑
i=2

Q2,i:m:n

∣∣∣∣∣∣
 =

m − 1
m2 ,

which implies convergence in probability [18]. In addition,

1
m2

m∑
i=2

Q3,i:m:n =
1

m2

m∑
i=2


i∑

j=2

 m∑
k= j

(1 + Rk)


−1

2

i∑
j=2

 m∑
k= j

(1 + Rk)


−2
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≥
1

m2

m∑
i=2

 i∑
j=2

m − 1 +

m∑
k= j

Rk


−1

2

i∑
j=2

(m − i + 1)−2

=
1

m2

m∑
i=2

(i − 1)


m − i + 1

m − 1 +

m∑
k= j

Rk



2

=
1

m2

m − 1 +

m∑
k= j

Rk


2

m2
m∑

j=1

j +

m∑
j=1

j3 − 2m
m∑

j=1

j2

 ,

which converges to a constant as m→ ∞. This completes the proof. �

The estimation for θ can be accomplished by a similar argument to that used for obtaining the
estimator λ̂u. To do this, we employ the pivotal quantity F(θ) in Lemma 2.1. The inverse of the pivotal
quantity F(θ) is written as

1
F(θ)

=
2Z1/2

2
m∑

i=2
Zi

/
[2(m − 1)]

, (2.9)

which has an F (2, 2(m − 1)) distribution. By Slutsky’s theorem [19], the distribution of 2/F(θ)
converges to a χ2

2 distribution as m → ∞ since the denominator term in (2.9) converges to 1 in
probability as m → ∞. Then, using the mean of a χ2

2 distribution, an equation for θ is obtained
as 2/F(θ) = 2. From the equation, an estimator of θ is derived as

θ̂p = X1:m:n exp

−
m∑

i=1
(1 + Ri) log Xi:m:n − n log X1:m:n

n(m − 1)

 .
Theorem 2.4. The estimator θ̂p is an asymptotic unbiased and consistent estimator.

Proof. Since the quantity
(

m∑
i=1

(1 + Ri) log Xi:m:n − n log X1:m:n

) /
[n(m − 1)] has a gamma distribution

with parameters (m − 1, nλ(m − 1)), by its moment generating function, we have

E

exp

−
m∑

i=1
(1 + Ri) log Xi:m:n − n log X1:m:n

n(m − 1)


 =

[
1 +

1
nλ(m − 1)

]−(m−1)

(2.10)
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and

E

exp

−
2
(

m∑
i=1

(1 + Ri) log Xi:m:n − n log X1:m:n

)
n(m − 1)


 =

[
1 +

2
nλ(m − 1)

]−(m−1)

. (2.11)

In addition, the first and second moments of X1:m:n are

E (X1:m:n) =

∫ ∞

θ

nλ
(
θ

x

)λn

dx

=
nλθ

nλ − 1
, λ >

1
n

(2.12)

and

E
(
X2

1:m:n

)
=

∫ ∞

θ

nλx
(
θ

x

)λn

dx

=
nλθ2

nλ − 2
, λ >

2
n
, (2.13)

respectively. Then, using (2.10) and (2.12), the mean of the estimator θ̂p is obtained as

E
(
θ̂p

)
= E

X1:m:n exp

−
m∑

i=1
(1 + Ri) log Xi:m:n − n log X1:m:n

n(m − 1)




= E (X1:m:n) E

exp

−
m∑

i=1
(1 + Ri) log Xi:m:n − n log X1:m:n

n(m − 1)




=
nλθ

(nλ − 1)

[
1 +

1
nλ(m − 1)

]−(m−1)

and using (2.10)–(2.13), the variance of the estimator θ̂p is obtained as

Var
(
θ̂p

)
=Var

X1:m:n exp

−
m∑

i=1
(1 + Ri) log Xi:m:n − n log X1:m:n

n(m − 1)




=

E

exp

−
m∑

i=1
(1 + Ri) log Xi:m:n − n log X1:m:n

n(m − 1)





2

Var (X1:m:n)

+ Var

exp

−
m∑

i=1
(1 + Ri) log Xi:m:n − n log X1:m:n

n(m − 1)


 E

(
X2

1:m:n

)
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= −

[
1 +

1
nλ(m − 1)

]−2(m−1) n2λ2θ2

(nλ − 1)2 +

[
1 +

2
nλ(m − 1)

]−(m−1) nλθ2

(nλ − 2)

= −

1 +
1(

m +
m∑

i=1
Ri

)
λ(m − 1)


−2(m−1)

(
m +

m∑
i=1

Ri

)2

λ2θ2

[(
m +

m∑
i=1

Ri

)
λ − 1

]2

+

1 +
2(

m +
m∑

i=1
Ri

)
λ(m − 1)


−(m−1)

(
m +

m∑
i=1

Ri

)
λθ2[(

m +
m∑

i=1
Ri

)
λ − 2

] .
The mean E

(
θ̂p

)
converges to θ in probability as m → ∞, and the variance Var

(
θ̂p

)
converges to zero

in probability as m→ ∞. This completes the proof. �

Note that the estimator θ̂p is not unbiased because of E
(
θ̂p

)
, θ. So, we provide another estimator

for θ that is improved in terms of the bias. From (2.12), an unbiased estimator of θ is obtained as
X1:m:n [1 − 1/(nλ)] for known λ. Then, by substituting λ with the MLE λ̂, an unbiased estimator of θ is
derived as

θ̂u = X1:m:n

[
1 −

m
n(m − 1)λ̂

]

= X1:m:n

1 −
m∑

i=1
(1 + Ri) log Xi:m:n − n log X1:m:n

n(m − 1)

 .
The relationship θ̂p ≥ θ̂u is satisfied because of exp(−a) ≥ 1 − a for all real numbers a which can be

easily shown from the Maclaurin series exp(a) = 1 + a +
∞∑

i=2
ai/i! for all real numbers a.

Theorem 2.5. The estimator θ̂u has unbiasedness and consistency.

Proof. The inverse of MLE λ̂ has a gamma distribution with parameters (m − 1, λm), and its first and
second moments are

E
(
1
λ̂

)
=

m − 1
λm

(2.14)

and

E
(

1
λ̂2

)
=

m − 1
λ2m

, (2.15)

respectively. Then, using (2.12) and (2.14), the mean of the estimator θ̂u is obtained as

E
(
θ̂u

)
= E

[
X1:m:n

(
1 −

m
n(m − 1)λ̂

)]
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= E (X1:m:n) − E (X1:m:n) E
[

m
n(m − 1)λ̂

]
=

nλθ
nλ − 1

−
θ

nλ − 1
= θ.

Using (2.12)–(2.15), the variance of the estimator θ̂u is obtained as

Var
(
θ̂u

)
= Var

[
X1:m:n

(
1 −

m
n(m − 1)λ̂

)]
=

{
E

[
1 −

m
n(m − 1)λ̂

]}2

Var (X1:m:n) + Var
[
1 −

m
n(m − 1)λ̂

]
E

(
X2

i:m:n

)
=

mθ2

nλ(nλ − 2)(m − 1)

=
mθ2(

m +
m∑

i=1
Ri

)
λ

[(
m +

m∑
i=1

Ri

)
λ − 2

]
(m − 1)

,

which converges to zero as m→ ∞. This completes the proof. �

On the other hand, the pivotal quantity X2(θ) yields an estimation equation X2(θ) = 2(m − 2) from
the fact that X2(θ)/2(m − 2) converges to 1 in probability as m → ∞. However, the equation does not
provide a closed form of solution, so it is not considered here.

2.2. Interval estimation

As mentioned earlier, the approximate CIs based on the MLEs are constructed when the condition
λ̂ < m/n is satisfied. Another classical method of constructing CIs for λ and θ is based on
the bootstrap method. It is conducted through the following steps: First, the MLEs λ̂ and θ̂ are
calculated based on the original APT-II censored sample. Second, B bootstrap APT-II censored
samples are generated from the marginal distribution with the MLEs λ̂ and θ̂, which is denoted as
X(b)

1:m:n ≤ · · · ≤ X(b)
m:m:n, b = 1, . . . , B. Then, the MLEs for λ and θ are calculated based on the bootstrap

APT-II censored sample
{
X(b)

1:m:n, . . . , X
(b)
m:m:n

}
, and it is denoted as λ̂(b) and θ̂(b), b = 1, . . . , B, respectively.

After obtaining
{
λ̂(1), . . . , λ̂(B)

}
and

{
θ̂(1), . . . , θ̂(B)

}
, we can construct the CIs for λ and θ using their

percentiles. In other words, 100(1 − α)% CIs for λ and θ are constructed as
(
λ̂([(α/2)B]), λ̂([(1−α/2)B])

)
and

(
θ̂([(α/2)B]), θ̂([(1−α/2)B])

)
for 0 < α < 1, where λ̂([αB]) and θ̂([αB]) denote the [αB]th smallest values of{

λ̂(1), . . . , λ̂(B)
}

and
{
θ̂(1), . . . , θ̂(B)

}
, respectively. However, the CI for θ does not satisfy nominal levels

because θ̂(b) = X(b)
1:m:n, b = 1, . . . , B is always greater than the true value of θ.

The pivotal-based interval inference we now provide can address these limitations, and it does not
require complex mathematical calculations, unlike the FIM. Even for a small sample size, the estimated
interval from the pivotal quantity satisfies nominal levels well. Here, ECIs for λ and θ are provided
using the pivotal quantities in Lemma 2.1.
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For λ, since the pivotal quantity X1(λ) in Lemma 2.1 has a χ2
2(m−1) distribution, it follows that

1 − α =P

χ2
1−α/2,2(m−1) < 2λ

 m∑
i=1

(1 + Ri) log Xi:m:n − n log X1:m:n

 < χ2
α/2,2(m−1)


for 0 < α < 1, where χ2

α,2(m−1) denotes the upper α percentile of a χ2
2(m−1) distribution. Then, an

exact 100(1 − α)% CI for λ is given by
χ2

1−α/2,2(m−1)

2
(

m∑
i=1

(1 + Ri) log Xi:m:n − n log X1:m:n

) , χ2
α/2,2(m−1)

2
(

m∑
i=1

(1 + Ri) log Xi:m:n − n log X1:m:n

)
 .

For θ, since the pivotal quantity F(θ) in Lemma 2.1 has an F (2(m − 1), 2) distribution, it follows that

1 − α = P

F1−α/2(2(m−1),2) <

m∑
i=1

(1 + Ri) log Xi:m:n − n log X1:m:n

n(m − 1) log (X1:m:n/θ)
< Fα/2(2(m−1),2)


for 0 < α < 1, where Fα(2(m−1),2) denotes the upper α percentile of an F (2(m − 1), 2) distribution. Then,
an exact 100(1 − α)% CI for θ is given by[

X1:m:n exp
(
−Fα/2(2,2(m−1))g(X)

)
, X1:m:n exp

(
−F1−α/2(2,2(m−1))g(X)

)]
,

where g(X) =

(
m∑

i=1
(1 + Ri) log Xi:m:n − n log X1:m:n

) /
[n(m − 1)].

3. Replication

Let Xrep
i:m:n (i = 1, . . . ,m) be the replicated data of the observed APT-II censored sample x =

{x1:m:n, . . . , xm:m:n} with the censoring scheme R∗. The replicated data Xrep
i:m:n is generated by inferring

the marginal distribution F
(
Xrep

i:m:n|x; λ, θ
)

based on the observed APT-II censored sample. To achieve
it, GPQs for λ and θ are first defined as

G1(λ) =
X1(λ)

2
(

m∑
i=1

(1 + Ri) log xi:m:n − n log x1:m:n

)
and

G2(θ) = exp

log x1:m:n −

m∑
i=1

(1 + Ri) log xi:m:n − n log x1:m:n

n(m − 1)F(θ)

,
respectively, according to the argument of Weerahandi [20]. The GPQs G1(λ) and G2(θ) obviously
have two properties: The distributions of the GPQs G1(λ) and G2(θ) are free of unknown parameters,
and the realization of the GPQs G1(λ) and G2(θ) does not depend on the nuisance parameter.
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The realization of the GPQs G1(λ) and G2(θ) is obtained by using a pseudorandom sequence from
a χ2

2 distribution based on an idea on which the pivotal quantities X1(λ) and F(θ) in Lemma 2.1 are
derived. Then, by substituting λ and θ in the marginal distribution F

(
Xrep

i:m:n|x; λ, θ
)

with the realization
of the GPQs G1(λ) and G2(θ), respectively, the replicated data Xrep

i:m:n is generated. The detailed steps
are given in the following algorithm:

Algorithm 1

(a) Generate ζ1, . . . , ζm from a χ2
2 distribution.

(b) Compute X∗ =
m∑

i=2
ζi, followed by G∗1(λ) = X∗

2
(

m∑
i=1

(1+Ri) log xi:m:n−n log x1:m:n

) .

(c) Compute F∗ =
m∑

i=2
ζi/[2(m − 1)]/(ζ1/2), followed by G∗2(θ) =

exp

log x1:m:n −

m∑
i=1

(1+Ri) log xi:m:n−n log x1:m:n

n(m−1)F∗

.
(d) Generate Xrep

i:m:n from the sampling distribution F
(
Xrep

i:m:n|x;G∗1(λ),G∗2(θ)
)
.

(e) Repeat N(≥ 10, 000) times (a)–(d).

From Algorithm 1, a 100(1 − α)% interval for the replicated data Xrep
i:m:n is constructed as(

Xrep,([(α/2)N])
i:m:n , Xrep,([(1−α/2)N])

i:m:n

)
,

where Xrep,([αN])
i:m:n denotes the [αN]th smallest value of

{
Xrep,1

i:m:n, . . . , X
rep,N
i:m:n

}
. This interval is employed to

evaluate the uncertainty of the replicated data Xrep
i:m:n in Section 4.2.

4. Application

The proposed methodology is evaluated using the Monte Carlo simulation technique. Moreover, its
applicability and scalability are examined by performing real-world data analysis.

4.1. Simulation study

To verify the estimation performance of the proposed estimators in comparison with the MLEs,
Monte Carlo simulations with 10,000 replications are conducted through the R software. For the Pareto
distribution, the shape parameter of interest, λ, is assigned 0.5(0.5)1.5 to showcase the variations in
results according to the values of λ, and the scale parameter θ is assigned 1 without loss of generality.
In addition, the following censoring scheme is employed to emphasize the strength of the proposed
methodology for a sample size that is not large enough in various situations:

Scheme I : n = 20, m = 8, R =
(
1∗3, 0∗4, 9

)
,

II : n = 20, m = 8, R =
(
2∗2, 0∗5, 8

)
,

III : n = 20, m = 6, R =
(
1∗2, 0∗3, 12

)
,
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IV : n = 20, m = 6, R =
(
2, 0∗4, 12

)
,

V : n = 40, m = 16, R =
(
1∗7, 0∗8, 17

)
,

VI : n = 40, m = 16, R =
(
2∗6, 0∗9, 12

)
,

VII : n = 40, m = 12, R =
(
1∗5, 0∗6, 23

)
,

VIII : n = 40, m = 12, R =
(
2∗4, 0∗7, 20

)
.

For each censoring scheme, an APT-II censored sample is generated using the following steps:

(a) Generate an ordinary PT-II censored sample X∗1:m:n, . . . , X
∗
m:m:n with the censoring scheme R from

the algorithms of Balakrishnan and Sandhu [21] as follows:

(1) Generate m random numbers W1, . . . ,Wm from a standard uniform distribution.

(2) Compute Vi = W1/(i+Rm+···+Rm−i+1)
i , i = 1, . . . ,m.

(3) Compute Ui = 1 − Vm · · ·Vm−i+1, i = 1, . . . ,m, where U1, . . . ,Um is a PT-II censored sample
of size m from a standard uniform distribution.

(4) Compute X∗i:m:n = θ/(1 − Ui)1/λ, i = 1, . . . ,m, to obtain a PT-II censored sample from the
Pareto distribution with CDF (1.1).

(b) Determine the value of L, where X∗L:m:n < T < X∗L+1:m:n.

(c) Generate the first m− l− 1 order statistics from a truncated distribution f (x)/[1−F(xl+1:m:n)] with

sample size n −
l∑

i=1
(1 + Ri) − 1.

(d) Substitute X∗l+2:m:n, . . . , X
∗
m:m:n with the first m − l − 1 order statistics obtained in (c).

To ensure that the number of simulated APT-II censored samples observed until T is greater than 1, we
assign T = 2.5. Based on the generated APT-II censored samples, the mean squared errors (MSEs) and
biases of the provided estimators are computed for each censoring scheme. The results are reported in
Figure 1. In addition, the coverage probabilities (CPs) for the exact 95% CIs are provided in Figure 2.
As mentioned earlier, the approximate and bootstrap CIs based on the MLEs suffer from constraints.
Accordingly, only the results of the proposed ECIs for λ and θ are reported.

In Figure 1, the length of the line indicates the difference from the true value, so the shorter this
is, the better the performance of the corresponding estimator. Based on this argument, the results are
summarized as follows: For λ, λ̂u has the best performance in terms of the MSE and bias, followed
by λ̂w. For θ, θ̂p and θ̂u are more efficient than θ̂ in terms of the MSE and bias. To be specific, θ̂u has
the smallest bias, as expected, while θ̂p is slightly better than θ̂u in terms of the MSE. Taken together,
the proposed estimators have generally better performance than the corresponding MLEs in terms of
MSE and bias. Furthermore, the use of the proposed estimators, especially λ̂u and θ̂u, is strongly
recommended to infer the unknown parameters of the Pareto distribution with CDF (1.1) when the
sample size is not large enough. In Figure 2, the length of the line represents the difference from the
considered nominal level 0.95. According to this argument, the proposed intervals have a highly closer
CP to the considered nominal level.
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Figure 1. MSEs and biases of estimators for (a) λ and (b) θ.
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Figure 2. CPs of ECIs for λ and θ.
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In conclusion, the results in Figures 1 and 2 reveal that the proposed estimation method yields more
satisfactory results than the maximum likelihood estimation method in a situation where the sample
size is not large enough.

4.2. Data analysis

The Pareto distribution is often employed for modeling a wide range of real-world datasets, such as
insurance, reliability, engineering, and economics. In this subsection, the mortality rate of COVID-19
studied by Almetwally et al. [22] and Nik et al. [23] is analyzed to validate the practical application
of the proposed approaches for a real-world dataset, where the mortality rate refers to the proportion
of individuals who have died in a specific population or group affected by a particular disease. Nik et
al. [23] applied a new Pareto-type distribution to the mortality rate of COVID-19 for 25 days, from 10
April to 4 May 2020, in Canada, and the data is as follows:

3.1091 3.3825 3.1444 3.2135 2.4946 3.5146 4.9274 3.3769 6.8686 3.0914 4.9378 3.1091 3.2823
3.8594 4.0480 4.1685 3.6426 3.2110 2.8636 3.2218 2.9078 3.6346 2.7957 4.2781 4.2202

For analysis, an APT-II censored sample is generated from the above dataset by setting R = (2, 1∗11)
with m = 12 and T = 3.15. The generated APT-II censored sample and the analysis results are reported
in Tables 1 and 2, respectively.

Table 1. An APT-II censored sample from the mortality rate of COVID-19.
i 1 2 3 4 5 6 7 8 9 10 11 12

xi:12:25 2.4946 2.7957 2.8636 2.9078 3.1091 3.1091 3.2218 3.2823 3.3769 3.3825 3.6346 3.6426

Table 2. Estimates and 95% CIs of λ and θ.
Estimates 95% CIs

λ̂ λ̂u λ̂w θ̂ θ̂p θ̂u ECI for λ ECI for θ
2.050 1.708 1.209 2.495 2.441 2.442 (0.938, 3.141) (2.272, 2.493)

Additionally, to examine the applicability of Algorithm 1 in Section 3, the 95% intervals for the
replicated data Xrep

i:12:25 are obtained based on N = 20000. The resulting plot is presented in Figure 3,
which shows that the observed APT-II censored sample lies well within the 95% intervals. This
result reveals the applicability of the provided Algorithm 1 for real-world data analysis. In addition,
Figure 3 shows the goodness-of-fit test results obtained through the plug-in method. The plug-in
method generates the replicated data Xrep

i:12:25 by substituting the unknown parameters λ and θ in the
marginal distribution F

(
Xrep

i:12:25|x; λ, θ
)

with their estimators. Here, 20,000 replicated data Xrep
i:12:25 are

from F
(
Xrep

i:12:25|x; λ̂, θ̂
)

and F
(
Xrep

i:12:25|x; λ̂u, θ̂p

)
, and the empirical mean is computed. From Figure 3, it

can be seen that the APT-II censored sample reported in Table 1 has the Pareto distribution because the
points are close to a straight line.
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Figure 3. 95% intervals for Xrep
i:12:25 and the scatter plot between the APT-II censored sample

xi:12:25 and the empirical mean of Xrep
i:12:25.

5. Conclusions

The main goal of this paper is the proposal of an efficient inference method compared to classical
methods under the APT-II censoring scheme. To achieve this goal, we employed the pivotal quantity.
For illustration, the proposed method was applied to the Pareto distribution and provided closed-form
estimators with excellent properties for the unknown parameters. In addition, the pivotal approach led
to the exact inference results for the unknown parameters even when a sample size is not large enough,
unlike the maximum likelihood and bootstrap methods which suffer from constraints. Additionally, an
algorithm was proposed that generates the replicated data based on the GPQs.

The proposed methodology was evaluated through Monte Carlo simulations for small and middle
sample sizes. Our results showed that the provided estimators are superior to the MLEs in terms
of MSE and bias, and, especially, the unbiased and consistent estimators λ̂u and θ̂u have the best
performance. In addition, the proposed intervals are clearly exact for unknown parameters, and it
is demonstrated that their CPs are highly close to the considered nominal level in simulation results.
These results reveal the usefulness of the proposed method in a situation where the sample size is not
large enough. Additionally, the mortality rate of COVID-19 in Canada was analyzed, through which
the applicability of the proposed methodology for a real-world dataset is demonstrated.

In conclusion, for the Pareto distribution, the proposed methodology has superior performance when
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the sample size is not large enough, in comparison to the classical method. While this paper primarily
provided insights into the Pareto distribution, future studies will delve into several critical aspects.
First, the efficiency and accuracy of the proposed methodology will be assessed in various realistic
scenarios, to extend its practical utility. Second, the applicability of our approach to various other
probability distributions will be explored, broadening the scope of the study. In addition, a sensitivity
analysis will also be conducted to ascertain the robustness of our methodology, especially in situations
where the distribution estimation may be incorrect. Finally, subsequent studies will focus on validating
the performance of our approach in real-world applications, and a deeper exploration of applicability
in industrial settings will be undertaken.
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