Research article Special Issues

Numerical treatment for a novel crossover mathematical model of the COVID-19 epidemic

  • Received: 24 November 2023 Revised: 07 January 2024 Accepted: 17 January 2024 Published: 26 January 2024
  • MSC : 26A33, 39A50, 65L05

  • This paper extends a novel piecewise mathematical model of the COVID-19 epidemic using fractional and variable-order differential equations and fractional stochastic derivatives in three intervals of time. The deterministic models are augmented with hybrid fractional order and variable order operators, while the stochastic differential equations incorporate fractional Brownian motion. To probe the behavior of the proposed models, we introduce two numerical techniques: the nonstandard modified Euler Maruyama method for the fractional stochastic model, and the Caputo proportional constant-Grünwald-Letnikov nonstandard finite difference method for the fractional and variable-order deterministic models. Several numerical experiments corroborate the theoretical assertions and demonstrate the efficacy of the proposed approaches.

    Citation: Fawaz K. Alalhareth, Seham M. Al-Mekhlafi, Ahmed Boudaoui, Noura Laksaci, Mohammed H. Alharbi. Numerical treatment for a novel crossover mathematical model of the COVID-19 epidemic[J]. AIMS Mathematics, 2024, 9(3): 5376-5393. doi: 10.3934/math.2024259

    Related Papers:

  • This paper extends a novel piecewise mathematical model of the COVID-19 epidemic using fractional and variable-order differential equations and fractional stochastic derivatives in three intervals of time. The deterministic models are augmented with hybrid fractional order and variable order operators, while the stochastic differential equations incorporate fractional Brownian motion. To probe the behavior of the proposed models, we introduce two numerical techniques: the nonstandard modified Euler Maruyama method for the fractional stochastic model, and the Caputo proportional constant-Grünwald-Letnikov nonstandard finite difference method for the fractional and variable-order deterministic models. Several numerical experiments corroborate the theoretical assertions and demonstrate the efficacy of the proposed approaches.



    加载中


    [1] F. K. Alalhareth, A. Boudaoui, Y. El hadj Moussa, N. Laksaci, M. H. Alharbi, Dynamic of some relapse in a giving up smoking model described by fractional derivative, Fractal Fract., 7 (2023), 573. https://doi.org/10.3390/fractalfract7070543 doi: 10.3390/fractalfract7070543
    [2] M. A. Khan, A. Atangana, Mathematical modeling and analysis of COVID-19: A study of new variant omicron, Phys. A: Statist. Mech. Appl., 599 (2022), 127452. https://doi.org/10.1016/j.physa.2022.127452 doi: 10.1016/j.physa.2022.127452
    [3] Y. Chang, M. Funk, S. Roy, E. Stephenson, S. Choi, H. V. Kojouharov, et al., Developing a mathematical model of intracellular calcium dynamics for evaluating combined anticancer effects of afatinib and rp4010 in esophageal cancer, Int. J. Mol. Sci., 23 (2022), 1763. https://doi.org/10.3390/ijms23031763 doi: 10.3390/ijms23031763
    [4] C. A. Pollard, M. P. Morran, A. L. Nestor-Kalinoski, The COVID-19 pandemic: A global health crisis, Physiol. Genom., 52 (2020), 549–557. https://doi.org/10.1152/physiolgenomics.00089.2020 doi: 10.1152/physiolgenomics.00089.2020
    [5] H. H. Ayoub, H. Chemaitelly, S. Seedat, M. Makhoul, Z. Al Kanaani, A. Al Khal, et al., Mathematical modeling of the sars-cov-2 epidemic in qatar and its impact on the national response to COVID-19, J. Global Health, 11 (2021), 05005. https://doi.org/10.71892Fjogh.11.05005
    [6] R. N. Thompson, Epidemiological models are important tools for guiding COVID-19 interventions, BMC Med., 18 (2020), 152. https://doi.org/10.1186/s12916-020-01628-4 doi: 10.1186/s12916-020-01628-4
    [7] N. H. Sweilam, S. M. AL-Mekhlafi, S. M. Hassan, N. R. Alsenaideh, A. E. Radwan, New coronavirus (2019-ncov) mathematical model using piecewise hybrid fractional order derivatives; numerical treatments, Mathematics, 10 (2022), 4579. https://doi.org/10.3390/math10234579 doi: 10.3390/math10234579
    [8] A. Atangana, S. I. Araz, Deterministic-stochastic modeling: A new direction in modeling real world problems with crossover effect, HAL, 2021, 03201318.
    [9] A. Atangana, I. Koca, Modeling the spread of tuberculosis with piecewise differential operators, Comput. Model. Eng. Sci., 2021. http://dx.doi.org/10.32604/cmes.2022.019221 doi: 10.32604/cmes.2022.019221
    [10] A. Atangana, S. ˙I. Araz, New concept in calculus: Piecewise differential and integral operators, Chaos Solitons Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
    [11] C. Xu, W. Alhejaili, S. Saifullah, A. Khan, J. Khan, M. El-Shorbagy, Analysis of huanglongbing disease model with a novel fractional piecewise approach, Chaos Solitons Fract., 161 (2022), 112316. https://doi.org/10.1016/j.chaos.2022.112316 doi: 10.1016/j.chaos.2022.112316
    [12] K. J. Ansari, Asma, F. Ilyas, K. Shah, A. Khan, T. Abdeljawad, On new updated concept for delay differential equations with piecewise caputo fractional-order derivative, Wave. Random Complex Media, 2023. https://doi.org/10.1080/17455030.2023.2187241 doi: 10.1080/17455030.2023.2187241
    [13] S. Saifullah, S. Ahmad, F. Jarad, Study on the dynamics of a piecewise tumor–immune interaction model, Fractals, 30 (2022), 2240233. https://doi.org/10.1142/S0218348X22402332 doi: 10.1142/S0218348X22402332
    [14] S. Naowarat, S. Ahmad, S. Saifullah, M. D. l. Sen, A. Akgül, Crossover dynamics of rotavirus disease under fractional piecewise derivative with vaccination effects: Simulations with real data from thailand, west africa, and the us, Symmetry, 14 (2022), 2641. https://doi.org/10.3390/sym14122641 doi: 10.3390/sym14122641
    [15] S. Ahmad, M. F. Yassen, M. M. Alam, S. Alkhati, F. Jarad, M. B. Riaz, A numerical study of dengue internal transmission model with fractional piecewise derivative, Results Phys., 39 (2022), 105798. https://doi.org/10.1016/j.rinp.2022.105798 doi: 10.1016/j.rinp.2022.105798
    [16] S. A. Abdelmohsen, M. F. Yassen, S. Ahmad, A. M. Abdelbacki, J. Khan, Theoretical and numerical study of the rumours spreading model in the framework of piecewise derivative, Eur. Phys. J. Plus, 137 (2022), 738. https://doi.org/10.1140/epjp/s13360-022-02921-2 doi: 10.1140/epjp/s13360-022-02921-2
    [17] A. Zeb, A. Atangana, Z. A. Khan, S. Djillali, A robust study of a piecewise fractional order COVID-19 mathematical model, Alex. Eng. J., 61 (2022), 5649–5665. https://doi.org/10.1016/j.aej.2021.11.039 doi: 10.1016/j.aej.2021.11.039
    [18] X. P. Li, M. H. DarAssi, M. A. Khan, C. Chukwu, M. Y. Alshahrani, M. Al Shahrani, et al., Assessing the potential impact of COVID-19 Omicron variant: Insight through a fractional piecewise model, Results Phys., 38 (2022), 105652. https://doi.org/10.1016/j.rinp.2022.105652 doi: 10.1016/j.rinp.2022.105652
    [19] X. P. Li, H. F. Alrihieli, E. A. Algehyne, M. A. Khan, M. Y. Alshahrani, Y. Alraey, et al., Application of piecewise fractional differential equation to COVID-19 infection dynamics, Results Phys., 39 (2022), 105685. https://doi.org/10.1016/j.rinp.2022.105685 doi: 10.1016/j.rinp.2022.105685
    [20] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Amsterdam: Elsevier, 1998.
    [21] A. Atangana, S. ˙I. Araz, Fractional derivatives andspecial functions, SIAM, 18 (1976), 240–268. https://doi.org/10.1137/1018042 doi: 10.1137/1018042
    [22] D. Baleanu, A. Fernandez, A. Akgül, On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2020), 360. https://doi.org/10.3390/math8030360 doi: 10.3390/math8030360
    [23] A. Raza, D. Baleanu, T. N. Cheema, E. Fadhal, R. I. Ibrahim, N. Abdelli, Artificial intelligence computing analysis of fractional order COVID-19 epidemic model, AIP Adv., 13 (2023), 085017. https://doi.org/10.1063/5.0163868 doi: 10.1063/5.0163868
    [24] A. Perov, On the cauchy problem for a system of ordinary differential equations, Pviblizhen, Met. Reshen. Differ. Uvavn, 2 (1964), 115–134.
    [25] R. Scherer, S. L. Kalla, Y. Tang, J. Huang, The grünwald-letnikov method for fractional differential equations, Comput. Math. Appl., 62 (2011), 902–917.
    [26] L. Y. Hu, Y, D. Nualart, Modified euler approximation scheme for stochastic differential equations driven by fractional brownian motions, preprint paper, 2013. https://doi.org/10.48550/arXiv.1306.1458
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1227) PDF downloads(138) Cited by(3)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog