Research article Special Issues

On the boundedness of solutions of some fuzzy dynamical control systems

  • Received: 05 December 2023 Revised: 11 January 2024 Accepted: 16 January 2024 Published: 26 January 2024
  • MSC : 93C10, 93C42, 93D15

  • The asymptotic behavior of solutions of fuzzy control systems is a component of the study of fuzzy control theory. The study of stability for T-S (Takagi-Sugeno) fuzzy systems, which process qualitative data through linguistic expressions, is the subject of this paper. Asymptotic stability is conservative in many real-world applications due to measurement noise and other disruptions. The ultimate limit, which indicates that the mistakes stay in a specific area close to the origin after a long enough amount of time, is a crucial characteristic that is frequently defined for such systems. We are interested with the problem of the state feedback controller for T-S fuzzy models with uncertainties where the global exponential ultimate boundedness of solutions is studied for certain fuzzy control systems. We use common quadratic Lyapunov function and parallel distributed compensation controller techniques to study the asymptotic behavior of the solutions of fuzzy control system in presence of perturbations. An example demonstrating the validity of the main result is discussed.

    Citation: Omar Kahouli, Amina Turki, Mohamed Ksantini, Mohamed Ali Hammami, Ali Aloui. On the boundedness of solutions of some fuzzy dynamical control systems[J]. AIMS Mathematics, 2024, 9(3): 5330-5348. doi: 10.3934/math.2024257

    Related Papers:

  • The asymptotic behavior of solutions of fuzzy control systems is a component of the study of fuzzy control theory. The study of stability for T-S (Takagi-Sugeno) fuzzy systems, which process qualitative data through linguistic expressions, is the subject of this paper. Asymptotic stability is conservative in many real-world applications due to measurement noise and other disruptions. The ultimate limit, which indicates that the mistakes stay in a specific area close to the origin after a long enough amount of time, is a crucial characteristic that is frequently defined for such systems. We are interested with the problem of the state feedback controller for T-S fuzzy models with uncertainties where the global exponential ultimate boundedness of solutions is studied for certain fuzzy control systems. We use common quadratic Lyapunov function and parallel distributed compensation controller techniques to study the asymptotic behavior of the solutions of fuzzy control system in presence of perturbations. An example demonstrating the validity of the main result is discussed.



    加载中


    [1] B. B. Hamed, I. Ellouze, M. A. Hammami, Practical uniform stability of nonlinear differential delay equations, Mediterr. J. Math., 8 (2011), 603–616. https://doi.org/10.1007/s00009-010-0083-7 doi: 10.1007/s00009-010-0083-7
    [2] B. B. Hamed, M. A. Hammami, Practical stabilization of a class of uncertain time-varying non-linear delay systems, J. Contr. Theo. Appl., 7 (2009), 175–180. https://doi.org/10.1007/s11768-009-8017-2 doi: 10.1007/s11768-009-8017-2
    [3] R. T. Bupp, D. S. Bernstein, V. T. Coppola, A benchmark problem for nonlinear control design, Int. J. Nonlin. Robust Contr., 8 (1998), 307–310. https://doi.org/10.1109/91.919253 doi: 10.1109/91.919253
    [4] P. Bergsten, R. Palm, D. Driankov, Observers for Takagi-Sugeno fuzzy systems, IEEE T. Syst. Man Cy-S., Part B (Cybernetics), 32 (2002), 114–121. https://doi.org/10.1109/3477.979966 doi: 10.1109/3477.979966
    [5] R. Datta, R. Saravanakumar, R. Dey, B. Bhattacharya, Further results on stability analysis of Takagi-Sugeno fuzzy time-delay systems via improved Lyapunov-Krasovskii functional, AIMS Math., 7 (2022), 16464–16481. https://doi.org/10.3934/math.2022901 doi: 10.3934/math.2022901
    [6] F. Delmotte, T. M. Guerra, M. Ksontini, Continuous Takagi-Sugeno's models: Reduction of the number of LMI conditions in various fuzzy control design techniques, IEEE Trans. Fuzzy Syst., 15 (2007), 426–438. https://doi.org/10.1109/TFUZZ.2006.889829 doi: 10.1109/TFUZZ.2006.889829
    [7] M. Dlala, M. A. Hammami, Uniform exponential practical stability of impulsive perturbed systems, J. Dyn. Control Syst., 13 (2007), 373–386. https://doi.org/10.1007/s10883-007-9020-x doi: 10.1007/s10883-007-9020-x
    [8] C. Fantuzzi, R. Rovatti, On the approximation capabilities of the homogeneous Takagi- Sugenomodel, in fuzzy systems, Proceedings of the Fifth IEEE International Conference on Decision and Control, 2 (1996). https://doi.org/10.1109/FUZZY.1996.552326
    [9] M. A. Hammami, On the stability of nonlinear control systems with uncertaintly, J. Dyn. Contr. Sys., 7 (2001), 171–179. https://doi.org/10.1023/A:1013099004015 doi: 10.1023/A:1013099004015
    [10] Z. HajSalem, M. A. Hammami, M. Mohamed, On the global uniform asymptotic stability of time varying dynamical systems, Stud. Univ. B. B. Math., 59 (2014), 57–67. Available from: https://www.cs.ubbcluj.ro/studia-m/2014-1/2014-1/06-hajsalem-hammami-mabrouk-final.pdf.
    [11] M. A. Hammami, Global stabilization of a certain class of nonlinear dynamical systems using state detection, Appl. Math. Lett., 14 (2001), 913–919. https://doi.org/10.1016/S0893-9659(01)00065-9 doi: 10.1016/S0893-9659(01)00065-9
    [12] H. Khalil, Nonlinear systems, 3 Eds., Englewood Cliffs, NJ: Prentice-Hall.
    [13] E. Kim, H. Lee, New approaches to relaxed quadratic stability condition of fuzzy control systems, IEEE T. Fuzzy Syst., 8 (2000), 523–534. https://doi.org/10.1109/91.873576 doi: 10.1109/91.873576
    [14] H. K. Lam, F. H. F. Leung, Stability analysis of fuzzy control systems subject to uncertain grades of membership, IEEE T. Syst. Man Cy-S., Part B, 35 (2005), 1322–1325. https://doi.org/10.1109/tsmcb.2005.850181
    [15] A. Larrache, M. Lhous, S. B. Rhila, M. Rachik, A. Tridane: An output sensitivity problem for a class of linear distributed systems with uncertain initial state, Arch. Control Sci., 30 (2020), 139–155. https://doi.org/10.24425/acs.2020.132589 doi: 10.24425/acs.2020.132589
    [16] D. H. Lee, J. B. Park, Y. H. Joo, A fuzzy Lyapunov function approach to estimating the domain of attraction for continuous-time Takagi-Sugeno fuzzy systems, Inform. Sciences, 185 (2012), 230–248. https://doi.org/10.1016/j.ins.2011.06.008 doi: 10.1016/j.ins.2011.06.008
    [17] J. Huang, Nonlinear output regulation: Theory and application, Philadelphia, USA: SIAM, 2004. Available from: https://epubs.siam.org/doi/pdf/10.1137/1.9780898718683.fm.
    [18] M. Ksantini, M. A. Hammami, F. Delmotte, On the global exponential stabilization of Takagi-Sugeno fuzzy uncertain systems, Int. J. Innovative Comp. Inf. Contr., 11 (2015), 281–294. Available from: http://www.ijicic.org/ijicic-110120.pdf.
    [19] Y. Menasria, H. Bouras, N. Debbache, An interval observer design for uncertain nonlinear systems based on the T-S fuzzy model, Arch. Control Sci., 27 (2017), 397–407. https://doi.org/10.1515/acsc-2017-0025 doi: 10.1515/acsc-2017-0025
    [20] H. Perez, B. Ogunnaike, S. Devasia, Output tracking between operating points for nonlinear process: Van de Vusse example, IEEE Trans. Contr. Syst. Tech., 10 (2002) 611–617. https://doi.org/10.1109/TCST.2002.1014680 doi: 10.1109/TCST.2002.1014680
    [21] R. Sriraman, R. Samidurai, V. C. Amritha, G. Rachakit, P. Balaji, System decomposition-based stability criteria for Takagi-Sugeno fuzzy uncertain stochastic delayed neural networks in quaternion field, AIMS Math., 8 (2023), 11589–11616. https://doi.org/10.3934/math.2023587 doi: 10.3934/math.2023587
    [22] R. Sriraman, P. Vignesh, V. C. Amritha, G. Rachakit, P. Balaji, Direct quaternion method-based stability criteria for quaternion-valued Takagi-Sugeno fuzzy BAM delayed neural networks using quaternion-valued Wirtinger-based integral inequality, AIMS Math., 8 (2023), 10486–10512. https://doi.org/10.3934/math.2023532 doi: 10.3934/math.2023532
    [23] K. Tanaka, M. Sugeno, Stability analysis and design of fuzzy control systems, Fuzzy Set. Syst., 45 (1992), 135–156. https://doi.org/10.1016/0165-0114(92)90113-I doi: 10.1016/0165-0114(92)90113-I
    [24] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modelling and control, IEEE Trans. Syst. Man Cyber., 15 (1985), 116–132. http://dx.doi.org/10.1109/TSMC.1985.6313399 doi: 10.1109/TSMC.1985.6313399
    [25] H. D. Tuan, P. Apkarian, T. Narikiyo, Y. Yamamoto, Parameterized linear matrix inequality techniques in Fuzzy control system design, IEEE T. Fuzzy Syst., 9 (2001), 324–332. https://doi.org/10.1109/91.919253 doi: 10.1109/91.919253
    [26] N. Vafamand, M. H. Asemani, A. Khayatiyan, A robust L 1 controller design for continuous-time TS systems with persistent bounded disturbance and actuator saturation, Eng. Appl. Artif. Intell., 56 (2016), 212–221. https://doi.org/10.1016/j.engappai.2016.09.002 doi: 10.1016/j.engappai.2016.09.002
    [27] W. B. Xie, H. Li, Z. H. Wang, J. Zhang, Observer-based controller design for a T-S fuzzy system with unknown premise variables, Int. J. Control Autom. Syst., 17 (2019), 907–915. https://doi.org/10.1007/s12555-018-0245-0 doi: 10.1007/s12555-018-0245-0
    [28] J. Yang, S. Li, X. Yu, Sliding-mode control for systems with mismatched uncertainties via a disturbance observer, IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, 60 (2013), 160–169. https://doi.org/10.1109/IECON.2011.6119961
    [29] M. Sugeno, G. T. Kang, Structure identification of fuzzy model, Fuzzy Set. Syst., 28 (1988), 15–33. http://dx.doi.org/10.1016/0165-0114(88)90113-3 doi: 10.1016/0165-0114(88)90113-3
    [30] M. Sugeno, Fuzzy control, North-Holland, 1988.
    [31] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cyber., 15 (1985), 116–132. http://dx.doi.org/10.1109/TSMC.1985.6313399 doi: 10.1109/TSMC.1985.6313399
    [32] K. Tanaka, H. O. Wang, Fuzzy control systems design and analysis, John Wiley and Sons, New York, USA, 2001.
    [33] M. C. M. Teixeira, E. Assuncao, R. G. Avellar, On relaxed LMI-based designs for fuzzy regulators and fuzzy observers, IEEE T. Fuzzy Syst., 11 (2003), 613–623. https://doi.org/10.1109/TFUZZ.2003.817840 doi: 10.1109/TFUZZ.2003.817840
    [34] H. O. Wang, K. Tanaka, M. Griffin, Parallel distributed compensation of nonlinear systems by Takagi and Sugeno's model, Proceedings of 1995 IEEE International Conference on Fuzzy Systems, 2 (1995). https://doi.org/10.1109/FUZZY.1995.409737
    [35] G. Yang, F. Hao, L. Zhang, L. X. Gao, Stabilization of discrete-time positive switched T-S fuzzy systems subject to actuator saturation, AIMS Math., 8 (2023), 12708–12728. https://doi.org/10.3934/math.2023640 doi: 10.3934/math.2023640
    [36] X. D. Liu, Q. L. Zhang, New approaches to H controller designs based on fuzzy observers for T-S fuzzy systems via LMI, Automatica, 39 (2003), 1571–1582. https://doi.org/10.1016/S0005-1098(03)00172-9 doi: 10.1016/S0005-1098(03)00172-9
    [37] L. X. Wang, Robust disturbance attenuation with stability for linear systems with norm-bounded nonlinear uncertainties, IEEE Trans. Autom. Control, 41 (1996), 886–888. https://doi.org/10.1109/WCICA.2004.1340782 doi: 10.1109/WCICA.2004.1340782
    [38] L. Xua, S. S. Ge, The pth moment exponential ultimate boundedness of impulsive stochastic differential systems, Appl. Math. Lett., 42 (2015), 22–29. http://dx.doi.org/10.1016/j.aml.2014.10.018 doi: 10.1016/j.aml.2014.10.018
    [39] F. You, S. Cheng, K. Tian, X. Zhang, Robust fault estimation based on learning observer for Takagi-Sugeno fuzzy systems with interval time-varying delay, Int. J. Adapt. Control, 17 (2019). https://doi.org/10.1002/acs.3070 doi: 10.1002/acs.3070
    [40] L. Zadeh, Fuzzy sets, Fuzzy Sets, Fuzzy Logic and Fuzzy Systems, Selected Papers, 1996. https://doi.org/10.1142/2895
    [41] A. Dharmarajan, P. Arumugam, S. Ramalingam, K. Ramasamy, Equivalent-Input-Disturbance based robust control design for fuzzy semi-markovian jump systems via the Proportional-Integral observer approach, Mathematics, 2023, 2543. https://doi.org/10.3390/math11112543 doi: 10.3390/math11112543
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(955) PDF downloads(120) Cited by(1)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog