Research article

Compactness for commutators of Calderón-Zygmund singular integral on weighted Morrey spaces

  • Received: 19 November 2023 Revised: 22 December 2023 Accepted: 27 December 2023 Published: 08 January 2024
  • MSC : 42B20, 42B25

  • We prove boundedness and compactness for the iterated commutators of the $ \theta $-type Calderón-Zygmund singular integral and its fractional variant on the weighed Morrey spaces.

    Citation: Jing Liu, Kui Li. Compactness for commutators of Calderón-Zygmund singular integral on weighted Morrey spaces[J]. AIMS Mathematics, 2024, 9(2): 3483-3504. doi: 10.3934/math.2024171

    Related Papers:

  • We prove boundedness and compactness for the iterated commutators of the $ \theta $-type Calderón-Zygmund singular integral and its fractional variant on the weighed Morrey spaces.



    加载中


    [1] M. T. Lacey, An enementary proof of the $A_2$ bound, Israel J. Math., 217 (2017), 181–195. https://doi.org/10.1007/s11856-017-1442-x doi: 10.1007/s11856-017-1442-x
    [2] A. K. Lerner, On pointwise estimates involving sparse operators, arXiv, a2016. https://doi.org/10.48550/arXiv.1512.07247
    [3] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226. https://doi.org/10.1090/S0002-9947-1972-0293384-6 doi: 10.1090/S0002-9947-1972-0293384-6
    [4] B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261–274. https://doi.org/10.1090/S0002-9947-1974-0340523-6 doi: 10.1090/S0002-9947-1974-0340523-6
    [5] R. R. Coifman, R. Rochberg, G. Weiss, Factoization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
    [6] A. Uchiyama, On the compactness of operators of Hankel type, Tohoku Math. J., 30 (1978), 163–171. https://doi.org/10.2748/tmj/1178230105 doi: 10.2748/tmj/1178230105
    [7] J. Alvarez, R. J. Bagby, D. S. Kurtz, C. Pérez, Weighted estimates for commutators of linear operators, Studia Math., 104 (1993), 195–209. https://doi.org/10.4064/sm-104-2-195-209 doi: 10.4064/sm-104-2-195-209
    [8] G. Hu, $L^p(\mathbb{R}^n)$ boundedness for the commutators of a homogeneous singular integral operator, Studia Math., 154 (2003), 13–27. https://doi.org/10.4064/SM154-1-2 doi: 10.4064/SM154-1-2
    [9] G. Hu, Q. Sun, X. Wang, $L^p(\mathbb{R}^n)$ bounds for commutators of convolution operators, Colloq. Math., 93 (2002), 11–20.
    [10] R. Bu, Z. Fu, Y. Zhang, Weighted estimates for bilinear square function with non-smooth kernels and commutators, Front. Math. China, 15 (2020), 1–20. https://doi.org/10.1007/s11464-020-0822-4 doi: 10.1007/s11464-020-0822-4
    [11] L. Chaffee, R. H. Torres, Characterization of compactness of the commutators of bilinear fractional integral operators, Potential Anal., 43 (2015), 481–494. https://doi.org/10.1007/s11118-015-9481-6 doi: 10.1007/s11118-015-9481-6
    [12] P. Chen, X. Duong, J. Li, Q. Wu, Compactness of Riesz transform commutator on stratified Lie groups, J. Funct. Anal., 277 (2019), 1639–1676. https://doi.org/10.1016/j.jfa.2019.05.008 doi: 10.1016/j.jfa.2019.05.008
    [13] Z. Fu, S. Gong, S. Lu, W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 27 (2015), 2825–2852. https://doi.org/10.1515/forum-2013-0064 doi: 10.1515/forum-2013-0064
    [14] W. Guo, H. Wu, D. Yang, A revisit on the compactness of commutators, Canad. J. Math., 73 (2021), 1667–1697. https://doi.org/10.4153/S0008414X20000644 doi: 10.4153/S0008414X20000644
    [15] S. G. Krantz, S. Li, Boundedness and compactness of integral operators on spaces of homogeneous type and applications, II, J. Math. Anal. Appl., 258 (2001), 642–657. https://doi.org/10.1006/jmaa.2000.7403 doi: 10.1006/jmaa.2000.7403
    [16] Y. Wen, W. Guo, H. Wu, G. Zhao, A note on maximal commutators with rough kernels, Comptes Rendus Math., 357 (2019), 424–435. https://doi.org/10.1016/j.crma.2019.04.014 doi: 10.1016/j.crma.2019.04.014
    [17] Y. Wen, H. Wu, On the commutators of Marcinkiewicz integrals with rough kernels in weighted Lebesgue spaces, Anal. Math., 46 (2020), 619–638. https://doi.org/10.1007/s10476-020-0053-7 doi: 10.1007/s10476-020-0053-7
    [18] X. T. Duong, M. Lacey, J. Li, B. D. Wick, Q. Wu, Commutators of Cauchy-Szego type integrals for domains in $C^n$ with minimal smoothness, Indiana Univ. Math. J., 70 (2021), 1505–1541. https://doi.org/10.1512/iumj.2021.70.8573 doi: 10.1512/iumj.2021.70.8573
    [19] Z. Fu, R. Gong, E. Pozzi, Q. Wu, Cauchy-Szegö commutators on weighted Morrey spaces, Math. Nachr., 296 (2023), 1859–1885. https://doi.org/10.1002/mana.202000139 doi: 10.1002/mana.202000139
    [20] Z. Fu, L. Grafakos, Y. Lin, Y. Wu, S. Yang, Riesz transform associated with the fractional Fourier transform and applications in image edge detection, Appl. Comput. Harmon. Anal., 66 (2023), 211–235. https://doi.org/10.1016/j.acha.2023.05.003 doi: 10.1016/j.acha.2023.05.003
    [21] Z. Fu, X. Hou, M. Y. Lee, J. Li, A study of one-sided singular integral and function space via reproducing formula, J. Geom. Anal., 33 (2023), 289. https://doi.org/10.1007/s12220-023-01340-8 doi: 10.1007/s12220-023-01340-8
    [22] R. Gong, M. N. Vempati, Q. Wu, P. Xie, Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces, J. Aust. Math. Soc., 113 (2022), 36–56. https://doi.org/10.1017/S1446788722000015 doi: 10.1017/S1446788722000015
    [23] Q. Y. Wu, Z. W. Fu, Weighted $p$-adic Hardy operators and their commutators on $p$-adic central Morrey spaces, Bull. Malays. Math. Sci. Soc., 40 (2017), 635–654. https://doi.org/10.1007/s40840-017-0444-5 doi: 10.1007/s40840-017-0444-5
    [24] S. G. Shi, Z. W. Fu, S. Z. Lu, On the compactness of commutators of Hardy operators, Pacific J. Math., 307 (2020), 239–256. https://doi.org/10.2140/pjm.2020.307.239 doi: 10.2140/pjm.2020.307.239
    [25] L. Grafakos, Modern fourier analysis, 2 Eds., Springer, 2009. https://doi.org/10.1007/978-0-387-09434-2
    [26] Y. Komori, S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282 (2009), 219–231. https://doi.org/10.1002/mana.200610733 doi: 10.1002/mana.200610733
    [27] C. B. Morrey, On th solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166. https://doi.org/10.1090/S0002-9947-1938-1501936-8 doi: 10.1090/S0002-9947-1938-1501936-8
    [28] G. Di Fazio, M. Ragusa, Commutators and Moeery spaces, Boll. Unione Math. Ital. A, 5 (1991), 323–332.
    [29] Y. Chen, Y. Ding, X. Wang, Compactness of commutators of Riesz potential on Morrey spaces, Potential Anal., 30 (2009), 301–313. https://doi.org/10.1007/s11118-008-9114-4 doi: 10.1007/s11118-008-9114-4
    [30] Y. Chen, Y. Ding, X. Wang, Compactness of commutators for singular integrals on Morrey spaces, Canad. J. Math., 64 (2012), 257–281. https://doi.org/10.4153/CJM-2011-043-1 doi: 10.4153/CJM-2011-043-1
    [31] Y. Ding, A characterization of BMO via commutators for some operators, Northeast. Math. J., 13 (1997), 422–432.
    [32] F. Liu, P. Cui, Variation operators for singular integrals and their commutators on weighted Morrey spaces and Sobolev spaces, Sci. China Math., 65 (2022), 1267–1292. https://doi.org/10.1007/s11425-020-1828-6 doi: 10.1007/s11425-020-1828-6
    [33] K. Yosida, Functional analysis, Springer-Verlag, Berlin, 1995. as://doi.org/10.1007/978-3-642-61859-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(804) PDF downloads(67) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog