Research article Special Issues

Exact solutions to the fractional nonlinear phenomena in fluid dynamics via the Riccati-Bernoulli sub-ODE method

  • Received: 03 September 2024 Revised: 17 October 2024 Accepted: 23 October 2024 Published: 01 November 2024
  • MSC : 34G20, 35A20, 35A22, 35R11

  • The Riccati-Bernoulli sub-ODE method has been used in recent research to efficiently investigate the analytical solutions of a non-linear equation widely used in fluid dynamics research. By utilizing this method, exact solutions are obtained for the space-time fractional symmetric regularized long-wave equation. These results comprehensively understand the long wave equation widely used in numerous fluid dynamics and wave propagation scenarios. The approach to studying these phenomena and using conceptual representation to understand their essential characteristics opens the door to valuable insights that may help improve both the theoretical and applied aspects of fluid dynamics and similar fields. Thus, as these complex equations demonstrate, the suggested approach is a valuable tool for conducting further research into non-linear phenomena across several disciplines.

    Citation: Waleed Hamali, Abdulah A. Alghamdi. Exact solutions to the fractional nonlinear phenomena in fluid dynamics via the Riccati-Bernoulli sub-ODE method[J]. AIMS Mathematics, 2024, 9(11): 31142-31162. doi: 10.3934/math.20241501

    Related Papers:

  • The Riccati-Bernoulli sub-ODE method has been used in recent research to efficiently investigate the analytical solutions of a non-linear equation widely used in fluid dynamics research. By utilizing this method, exact solutions are obtained for the space-time fractional symmetric regularized long-wave equation. These results comprehensively understand the long wave equation widely used in numerous fluid dynamics and wave propagation scenarios. The approach to studying these phenomena and using conceptual representation to understand their essential characteristics opens the door to valuable insights that may help improve both the theoretical and applied aspects of fluid dynamics and similar fields. Thus, as these complex equations demonstrate, the suggested approach is a valuable tool for conducting further research into non-linear phenomena across several disciplines.



    加载中


    [1] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Vol. 198, Elsevier, 1999.
    [2] X. J. Yang, Local fractional functional analysis and its applications, Hong Kong: Asian Academic Publisher Limited, 2011.
    [3] X. J. Yang, Advanced local fractional calculus and its applications, World Science Publisher, 2012.
    [4] M. A. Khan, M. A. Akbar, N. N. binti Abd Hamid, Traveling wave solutions for space-time fractional Cahn Hilliard equation and space-time fractional symmetric regularized long-wave equation, Alexandria Eng. J., 60 (2021), 1317–1324. https://doi.org/10.1016/j.aej.2020.10.053 doi: 10.1016/j.aej.2020.10.053
    [5] M. A. Khan, M. Ali Akbar, N. H. Ali, M. U. Abbas, The new auxiliary method in the solution of the generalized Burgers-Huxley equation, J. Prime Res. Math., 16 (2020), 16–26.
    [6] M. A. Khan, N. Alias, U. Ali, A new fourth-order grouping iterative method for the time fractional sub-diffusion equation having a weak singularity at initial time, AIMS Math., 8 (2023), 13725–13746. https://doi.org/10.3934/math.2023697 doi: 10.3934/math.2023697
    [7] M. A. Khan, N. Alias, I. Khan, F. M. Salama, S. M. Eldin, A new implicit high-order iterative scheme for the numerical simulation of the two-dimensional time fractional cable equation, Sci. Rep., 13 (2023), 1549. https://doi.org/10.1038/s41598-023-28741-7 doi: 10.1038/s41598-023-28741-7
    [8] N. Cao, X. J. Yin, S. T. Bai, L. Y. Xu, Lump-soliton, rogue-soliton interaction solutions of an evolution model for magnetized Rossby waves, Nonlinear Dyn., 112 (2024), 9367–9389. https://doi.org/10.1007/s11071-024-09492-0 doi: 10.1007/s11071-024-09492-0
    [9] P. Xu, F. T. Long, C. Shan, G. Li, F. Shi, K. J. Wang, The fractal modification of the Rosenau-Burgers equation and its fractal variational principle, Fractals, 32 (2024), 2450121. https://doi.org/10.1142/S0218348X24501214 doi: 10.1142/S0218348X24501214
    [10] M. A. Khatun, M. A. Arefin, M. H. Uddin, D. Baleanu, M. A. Akbar, M. Inc, Explicit wave phenomena to the couple-type fractional-order nonlinear evolution equations, Results Phys., 28 (2021), 104597. https://doi.org/10.1016/j.rinp.2021.104597 doi: 10.1016/j.rinp.2021.104597
    [11] M. H. Uddin, M. A. Akbar, M. A. Khan, M. A. Haque, Families of exact traveling wave solutions to the space-time fractional modified KdV equation and the fractional Kolmogorov-Petrovskii-Piskunov equation, J. Mech. Cont. Math. Sci., 13 (2018), 17–33.
    [12] U. H. M. Zaman, M. A. Arefin, M. A. Akbar, M. H. Uddin, Explore dynamical soliton propagation to the fractional order nonlinear evolution equation in optical fiber systems, Opt. Quant. Electron., 55 (2023), 1295. https://doi.org/10.1007/s11082-023-05474-5 doi: 10.1007/s11082-023-05474-5
    [13] K. K. Ali, R. I. Nuruddeen, K. R. Raslan, New structures for the space-time fractional simplified MCH and SRLW equations, Chaos Soliton. Fract., 106 (2018), 304–309. https://doi.org/10.1016/j.chaos.2017.11.038 doi: 10.1016/j.chaos.2017.11.038
    [14] C. E. Seyler, D. L. Fenstermacher, A symmetric regularized long wave equation, Phys. Fluids, 27 (1984), 4–7. https://doi.org/10.1063/1.864487 doi: 10.1063/1.864487
    [15] D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25 (1966), 321–330. https://doi.org/10.1017/S0022112066001678 doi: 10.1017/S0022112066001678
    [16] J. J. Yang, S. F. Tian, Z. Q. Li, Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions, Phys. D, 432 (2022), 133162. https://doi.org/10.1016/j.physd.2022.133162 doi: 10.1016/j.physd.2022.133162
    [17] D. C. Nandi, M. S. Ullah, H. O. Roshid, M. Z. Ali, Application of the unified method to solve the ion sound and Langmuir waves model, Heliyon, 8 (2022), e10924. https://doi.org/10.1016/j.heliyon.2022.e10924 doi: 10.1016/j.heliyon.2022.e10924
    [18] M. S. Ullah, O. Ahmed, M. A. Mahbub, Collision phenomena between lump and kink wave solutions to a $(3+ 1)$-dimensional Jimbo-Miwa-like model, Partial Differ. Equ. Appl. Math., 5 (2022), 100324. https://doi.org/10.1016/j.padiff.2022.100324 doi: 10.1016/j.padiff.2022.100324
    [19] M. S. Ullah, H. O. Roshid, M. Z. Ali, N. F. M. Noor, Novel dynamics of wave solutions for Cahn-Allen and diffusive predator-prey models using MSE scheme, Partial Differ. Equ. Appl. Math., 3 (2021), 100017. https://doi.org/10.1016/j.padiff.2020.100017 doi: 10.1016/j.padiff.2020.100017
    [20] S. F. Tian, X. F. Wang, T. T. Zang, W. H. Qiu, Stability analysis, solitary wave and explicit power series solutions of a $(2+ 1)$-dimensional nonlinear Schrödinger equation in a multicomponent plasma, Int. J. Numer. Methods Heat Fluid Flow, 3 (2021), 1732–1748. https://doi.org/10.1108/HFF-08-2020-0517 doi: 10.1108/HFF-08-2020-0517
    [21] A. Korkmaz, O. E. Hepson, K. Hosseini, H. Rezazadeh, M. Eslami, Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class, J. King Saud Univ.-Sci., 32 (2020), 567–574. https://doi.org/10.1016/j.jksus.2018.08.013 doi: 10.1016/j.jksus.2018.08.013
    [22] J. Manafian, Optical soliton solutions for Schrödinger-type nonlinear evolution equations by the tan($\Phi(\xi)/2$)-expansion method, Optik, 127 (2016), 4222–4245. https://doi.org/10.1016/j.ijleo.2016.01.078 doi: 10.1016/j.ijleo.2016.01.078
    [23] A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
    [24] S. Alshammari, M. M. Al-Sawalha, R. Shah, Approximate analytical methods for a fractional-order nonlinear system of Jaulent-Miodek equation with energy-dependent Schrödinger potential, Fractal Fract., 7 (2023), 140. https://doi.org/10.3390/fractalfract7020140 doi: 10.3390/fractalfract7020140
    [25] M. M. Al-Sawalha, R. Shah, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Math., 7 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
    [26] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
    [27] M. Alqhtani, K. M. Saad, R. Shah, W. Weera, W. M. Hamanah, Analysis of the fractional-order local Poisson equation in fractal porous media, Symmetry, 14 (2022), 1323. https://doi.org/10.3390/sym14071323 doi: 10.3390/sym14071323
    [28] M. Alqhtani, K. M. Saad, W. M. Hamanah, Discovering novel soliton solutions for $(3+ 1)$-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach, Opt. Quant. Electron., 55 (2023), 1149. https://doi.org/10.1007/s11082-023-05407-2 doi: 10.1007/s11082-023-05407-2
    [29] M. Naeem, O. F. Azhar, A. M. Zidan, K. Nonlaopon, R. Shah, Numerical analysis of fractional-order parabolic equations via Elzaki transform, J. Funct. Spaces, 2021 (2021), 3484482. https://doi.org/10.1155/2021/3484482 doi: 10.1155/2021/3484482
    [30] W. Alhejaili, E. Az-Zo'bi, R. Shah, S. A. El-Tantawy, On the analytical soliton approximations to fractional forced Korteweg-de Vries equation arising in fluids and Plasmas using two novel techniques, Commun. Theor. Phys., 76 (2024), 085001. https://doi.org/10.1088/1572-9494/ad53bc doi: 10.1088/1572-9494/ad53bc
    [31] S. Noor, W. Albalawi, R. Shah, M. M. Al-Sawalha, S. M. E. Ismaeel, S. A. El-Tantawy, On the approximations to fractional nonlinear damped Burger's-type equations that arise in fluids and plasmas using Aboodh residual power series and Aboodh transform iteration methods, Front. Phys., 12 (2024), 1374481. https://doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481
    [32] S. Noor, A. S. Alshehry, A. Shafee, R. Shah, Families of propagating soliton solutions for $(3+ 1)$-fractional Wazwaz-BenjaminBona-Mahony equation through a novel modification of modified extended direct algebraic method, Physica Scripta, 99 (2024), 045230. https://doi.org/10.1088/1402-4896/ad23b0 doi: 10.1088/1402-4896/ad23b0
    [33] M. Z. Sarikaya, H. Budak, H. Usta, On generalized conformable fractional calculus, TWMS J. Appl. Eng. Math., 9 (2019), 792–799.
    [34] D. Lu, Q. Shi, New Jacobi elliptic functions solutions for the combined KdV-mKdV equation, Int. J. Nonlinear Sci., 10 (2010), 320–325.
    [35] Y. Zhang, Solving STO and KD equations with modified Riemann-Liouville derivative using improved ($G/G'$)-expansion function method, Int. J. Appl. Math., 45 (2015), 16–22.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(223) PDF downloads(37) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog