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Abstract: The Riccati-Bernoulli sub-ODE method has been used in recent research to efficiently
investigate the analytical solutions of a non-linear equation widely used in fluid dynamics research. By
utilizing this method, exact solutions are obtained for the space-time fractional symmetric regularized
long-wave equation. These results comprehensively understand the long wave equation widely used in
numerous fluid dynamics and wave propagation scenarios. The approach to studying these phenomena
and using conceptual representation to understand their essential characteristics opens the door to
valuable insights that may help improve both the theoretical and applied aspects of fluid dynamics
and similar fields. Thus, as these complex equations demonstrate, the suggested approach is a valuable
tool for conducting further research into non-linear phenomena across several disciplines.
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1. Introduction

Accurately describing natural phenomena at small scales requires using fractional-order differential
equations instead of their integer-order counterparts. The need to formulate fractional ordinary
differential equations (ODEs) arises in modeling genuine materials’ electric and mechanical behavior
and describing the geological formations’ rheological type. As a result, fractional ODEs have
become increasingly important and famous, representing practical tools for a wide range of scientific
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and engineering fields. In particular, fractional ODEs can simulate various physical phenomena
realistically [1, 2]. Over the past few decades, substantial academic work has focused on finding
and describing closed-form solitary wave solutions for nonlinear partial differential equations of
fractional type [3]. Consequently, they have been used effectively in the literature and can build exact
solutions for nonlinear fractional differential equations with noticeable physical aspects. Finally, due
to their frequent recurrence in various applications such as signal processing, control theory, systems
identification, solid-state physics, condensed matter physics, plasma physics, optical fibers, chemical
kinetics, electrical circuits, bio-genetics and fluid dynamics, among others, nonlinear fractional
equations have attracted a lot of attention among researchers [4, 5]. Providing closed-form wave
solutions to these equations helps us understand these phenomena and find optimal ways to use
them. It has been suggested by several investigators that there are various integral methods to find
the soliton solution. These approaches are directed toward integer-order and fractional-order nonlinear
PDEs [6,7]. Most nonlinear scientific problems are approached in various multi-methodological cases,
providing different visions of the tried-and-true hierarchy of relations. These cases are associated with
other computational, analytical, and experiential instruments, grounding a new vision of nonlinear
matters. As mentioned above, these approaches support and encourage researchers’ attempts to extend
existing analyses for solution candidates.

Modern scientific research has shown significant interest in the search for exact solutions related
to fractional differential equations [9–12]. One of these equations, symmetric regularized long wave
(SRLW) [13], has greatly interested many researchers over the years.

(Ftt) + (Fxx) + Fxt (F) + FxFt + Ftt (Fxx) = 0. (1.1)

Seyler and Fenstermacher in 1984 were able to generalize the use of the SRLW equation to
space-charge dynamics, long water waves, and nonlinear ion-acoustic waves [14]. Peregrine
further elaborated on the significance of understanding undular bores in relation to broader wave
phenomena [15]. To investigate the SRLW equation, numerous matrix and algebraic methodologies
have been employed over the years: the Riemann-Hilbert scheme [16], the unified scheme [17], the
Hirota bilinear form [18], and the modified simple equation methodology [19]. Furthermore, the use
of ansatz methods, sub-equation method [20], the Sine-Gordon expansion method [21] and tanh-Θ/2-
expansion [22] has been employed in searching for solutions of SRLW equations. Developed upon
this work, our study utilizes the Riccati-Bernoulli sub-ODE method, which has not been employed
in this context before. In addition, the current paper broadens the model for studying the SRLW
equation to encompass fractional-order dynamics. It enriches future research directions worldwide
regarding the applicability of the SRLW equation to practical fluid dynamics problems. Incorporating
fractional calculus better describes the inherent memory and hereditary features inherent in modeling
such systems. We also show graphical solutions that signify the relationship of the fractional order
parameter to soliton dynamics to show how changes in this factor alter how waves move and the shape
of solitons. The graphical representation enhances the authors’ understanding of the flow of solitons
in space-time fractional models. It can be useful for solving more problems related to using the SRLW
equation in real-life problems, like atmospheric wave processes and weather forecasting.

Despite the plethora of studies on this subject, none of the previous works have examined the
output of the Riccati-Bernoulli sub-ODE method for the equations under discussion, or addressed
the applicability of the complex Bäcklund transformation. In this regard, our study provides relevant
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input into the academic discourse. The present research is devoted to presenting real and intricate
solutions within the framework of the Riccati-Bernoulli sub-ODE approach and contributing to the
analysis of soliton behaviour, which is crucial for analyzing wave processes, including wave processes
in the atmosphere. In addition, we find that shifts in solitons can be made by altering the parameters
that define them [23]. This change directly affects the distance for wave propagation in atmosphere
dynamics, respectively [24,25]. Further works also demonstrate this influence of varying parameters on
the waves behavior [26, 27]. Additionally, the present work provides a conceptual visualization of the
effect of the fractional order parameter on solitons, a visual representation to support mathematically
derived conclusions regarding the effect of fractional dynamics on the wave behaviour of solitons.
This study’s results should help elucidate soliton features and further their use in numerical simulation
of weather and other wave phenomena [28]. Specifically, our approach has aimed at the attempt to
narrow the gap between mathematics and problem-solving analyses pertinent to practical usage. This
has been achieved by combining theories from scientific as well as engineering disciplines [29, 30].
Other researches support relevance of this interdisciplinary link [31, 32]. We contemplate the spatial-
temporal fractional formulation of the SRLW equation, denoted as Eq (1.1), expressed as follows:

D2α
tt (F) + D2α

xx (F) + 2D2α
xt (F)2 + D4α

xxtt (F) = 0, 0 < α ≤ 1. (1.2)

Moreover, the operator defining α-derivatives of powers is accurately consistent with the
conformable fractional derivative [33]. The conformable fractional derivative provides a physically
sensible and straightforward model of non-local and memory-based processes that appear in many
real-world problems, such as fluid dynamics and vibrations. Classical derivatives, however, are local
operators and differentiate an input concerning a small neighborhood of the point in question. At the
same time, fractional derivatives also depend on past states to determine the system’s current behavior.
Specifically, using the conformable derivative to capture these effects is convenient. It retains essential
properties such as the chain and product rules, and has a more straightforward form to apply in physical
models. In the case of soliton dynamics and wave motion, the conformable fractional derivative is more
suited to describing the fractional dynamics of the soliton waveforms communicating non-locally and
representing the development over time. It also recreates energy dissipation and long-range dependence
in wave motion more efficiently than integer-order models. Therefore, its application in this work
enhances the investigation of the fractional-order dynamics of solitons and alternative nonlinear waves
in fluid and atmospheric environments. Thus, conformable fractional derivatives have quickly gained
popularity in recent years. It has shown that it can provide exact solutions for conformable fractional
nonlinear partial differential equations using various techniques.

Dα
ΘZ(Θ) = lim

l→0

Z(l(Θ)1−α − Z(θ))
l

, 0 < α ≤ 1. (1.3)

This investigation capitalizes on the following properties of this derivative:
Dα

ΘΘm = mΘm−α.

Dα
Θ (m1η(Θ) ± m2t(Θ)) = m1Dα

Θ(η(Θ)) ± m2Dα
Θ(t(Θ)).

Dα
Θ

[
f ◦ g

]
= Θ1−αg (Θ) Dα

Θ f (g(Θ)) .
(1.4)

This suggested methodology is well suitable for solving complicated algebraic computations as
revealed by the results above. The transformation makes extracting strict information about the
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fundamental processes that underlie such complex dynamic systems feasible; conversely, it makes
these processes better known. However, this method does have its own drawbacks, as discussed
below. For this method to be applied, their uses are somewhat difficult, especially when the equation
or the system of equations to be solved is highly nonlinear or when large amounts of computational
power will be needed. Moreover, whereas exact solutions offer a rich theoretical understanding of
the problem, they lack the flexibility to accommodate genuine randomness in complex and rapidly
changing contexts. Still, the techniques employed in the present work provide a solid basis for future
developments in analyzing such nonlinear phenomena as fluid dynamics and wave processes. The
remainder of this paper is organized as follows: Section 2 is devoted to describing the methodology
involved with using the Riccati-Bernoulli sub-ODE method and Bäcklund transformation. In Section 3,
brief descriptions of the mathematical formulation and the main equations used in this paper are
provided. The results and discussion are given in Section 4 to examine the performance of the acquired
solutions. Section 5 provides concluding remarks and suggests potential difficulties for future research.

2. Algorithm

In this section, we delineate the procedural framework guiding our approach to resolving nonlinear
fractional partial differential equations. Our methodology necessitates a strategy tailored to navigating
the intricate complexities inherent in tackling these equations. The statement of the problem calls for
a suitable approach that would help address the challenges involved in the nonlinear fractional partial
differential equations.

Step 1. Consider the following fractional partial differential equation (FPDE):

G1

(
g,Dα

t (g),Dα
y1

(g),Dα
y2

(g), gDα
y1

(g), . . .
)

= 0, 0 < α ≤ 1, (2.1)

g is an unknown function, (G1) is a polynomial in (y1, y2, y3, . . .) and t, and all partial derivatives include
nonlinear terms and higher-order derivatives. As such, complex wave paradigms and traveling wave
transformation techniques are considered, which help to simplify the original expression into a form
that can be used effectively.

G(x, t) = g(Θ), Θ = p
yα1
α

+ q
yα2
α

+ r
tα

α
. . . + Θo, (2.2)

where p, q, r, . . .Θo are constants.

Step 2. By means of a traveling wave transformation, Eq (2.1) is converted into the following nonlinear
ODE:

G2
(
g, g′(Θ), g′′(Θ), gg′(Θ), . . .

)
= 0. (2.3)

Step 3. With reference to the constraints cm , 0 and c−m , 0 at the same time, the presumptive solution
for g(Θ) is considered, and with the Bäcklund transformation method, the solution for φ(Θ) is obtained.

g(Θ) =

m∑
i=−m

ciφ(Θ)i. (2.4)

φ(Θ) =
−µb + aϕ(Θ)

a + bϕ(Θ)
. (2.5)
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With constants (µ), (a), and (b), suppose that b , 0 and introduce the function ϕ(Θ) given as:

dϕ
dΘ

= µ + ϕ(Θ)2, (2.6)

Reference [34], shows the post-solution of Eq (2.6) and lists the conditions under which different
scenarios are observed. The value of (µ) is then used to deduce the following analyses and the solution
ϕ(Θ) to be derived.

(i) If µ < 0, then ϕ(Θ) = −
√
−µ tanh(

√
−µΘ), or ϕ(Θ) = −

√
−µ coth(

√
−µΘ). (2.7)

(ii) If µ > 0, then ϕ(Θ) =
√
µ tan(

√
µΘ), or ϕ(Θ) = −

√
µ cot(

√
µΘ). (2.8)

(iii) If µ = 0, then ϕ(Θ) =
−1
Θ
. (2.9)

Step 4. The equilibrium state following a homogeneous balance and linear polymer analysis as well
as rationalization with nonlinear and higher-order derivative components are determined [35].

D
[

dzg
dΘz

]
= n + z, D

[
g j dzg

dΘz

]u

= n j + u(z + n). (2.10)

Step 5. The polynomial found from (2.5) is solved using computational tools such as Maple. Finally,
substitute the values of the coefficients back to Eq (2.4) to find g(Θ).

3. Execution of the problem

We solved the space-time fractional SRLW according to the proposed approach in this section with
the following waves transformation. Moreover, we conducted an examination of the formal solution
pertaining to the specified FPDE. Within this context, the complex field envelope, denoted as F(x, t),
represents a function reliant on retarded time along the axis of prorogation.

ψ = k
xα

α
− ω

tα

α
.

F(x, t) = f (ψ).
(3.1)

Now, by employing the above complex wave transformation, Eq (1.2) is transformed into the following
non-linear ODE: (

k2 + ω2
)

F′′ − 2ωk
(
F2

)′′
+ ω2k2 (F)′′′′ = 0. (3.2)

Upon integrating Eq (3.2) twice with respect to (ψ) and assuming the constants are zero, we obtain(
k2 + ω2

)
F − 2ωk

(
F2

)
+ ω2k2 (F)′′ = 0. (3.3)

Equation (2.10) can be utilized to determine the balance equilibrium state (N = 2), where the derivative
term F′′ is balanced with the highest-order nonlinear term F2. Following that, substituting Eq (2.6)
with Eq (2.4) into Eq (3.3) and setting the coefficients of φi(ψ) to zero, we have an algebraic equation
system. Using Maple, we can solve this system of algebraic equations and obtain the following results:
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Case 1.

c0 = 1/12

3 k2c2 + 3ω2c2 + 2ω k

√
−
−18 c2

2k2ω2 − 9 c2
2ω4 − 9 c2

2k4

4ω2k2 − 16ω kc2

ω−1k−1c2
−1,

c1 = −
4

√
−
−18 c2

2k2ω2 − 9 c2
2ω4 − 9 c2

2k4

4ω2k2 − 16ω kc2
, c−1 = 0, c2 = c2, c−2 = 0, ω = ω, k = k,

µ = 1/3

√
−
−18 c2

2k2ω2 − 9 c2
2ω4 − 9 c2

2k4

4ω2k2 − 16ω kc2
ω−1k−1c2

−1.

(3.4)

Case 2.

c0 =
2/3 ic1

2

ω2 , c1 = c1, c−1 = 0, c2 = −1/4 iω2,

c−2 = 0, µ = −4/3
c1

2

ω4 , b = b, ω = ω, k = −iω.
(3.5)

Case 3.

c0 = c0, c1 = 0, c−1 = 0, c2 = −32
c0

(
k2 − 2ω kc0 + ω2

)
ω2k2(

k2 + ω2 − 4ω kc0
)2 ,

c−2 = 0, ω = ω, k = k, µ = −1/8
k2 + ω2 − 4ω kc0

ω2k2 . (3.6)

Case 4.

c0 = c0, c1 = 0, c−1 = 0, c2 = 1/5
ω k

(
8 k3ω c0 + 3ω4 + 3 k4 + 6ω2k2 + 8ω3kc0 − 16ω2k2c0

2
)

(
k2 + ω2 − 4ω kc0

)2 ,

c−2 =
3

64

(
k2 + ω2 − 4ω kc0

)2

ω3k3 , ω = ω, k = k, µ = −1/8
k2 + ω2 − 4ω kc0

ω2k2 .

(3.7)

Solution Set. 1: Thus, case 1 based on Eq (1.2) has been analyzed. Further, the following specific
parameters have been used. As a result, the ensuing singular solitary wave solutions could be received
under the condition (µ < 0), and

c0 = 1/12

3 k2c2 + 3ω2c2 + 2ω k

√
−
−18 c2

2k2ω2 − 9 c2
2ω4 − 9 c2

2k4

4ω2k2 − 16ω kc2

ω−1k−1c2
−1,

µ = 1/3

√
−
−18 c2

2k2ω2 − 9 c2
2ω4 − 9 c2

2k4

4ω2k2 − 16ω kc2
ω−1k−1c2

−1,
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F1(x, t) = c0 +
4

√
−
−9 c2

2ω4 − 9 c2
2k4 − 18 c2

2k2ω2

4ω2k2 − 16ω kc2

×

(
−µ b − a

√
−µ tanh

(
√
−µ

(
kxα

α
−
ω tα

α

))) (
a − b

√
−µ tanh

(
√
−µ

(
kxα

α
−
ω tα

α

)))−1

+ c2

(
−µ b − a

√
−µ tanh

(
√
−µ

(
kxα

α
−
ω tα

α

)))2 (
a − b

√
−µ tanh

(
√
−µ

(
kxα

α
−
ω tα

α

)))−2

,

(3.8)

or

F2(x, t) = c0 +
4

√
−
−9 c2

2ω4 − 9 c2
2k4 − 18 c2

2k2ω2

4ω2k2 − 16ω kc2

×

(
−µ b − a

√
−µ coth

(
√
−µ

(
kxα

α
−
ω tα

α

))) (
a − b

√
−µ coth

(
√
−µ

(
kxα

α
−
ω tα

α

)))−1

+ c2

(
−µ b − a

√
−µ coth

(
√
−µ

(
kxα

α
−
ω tα

α

)))2 (
a − b

√
−µ coth

(
√
−µ

(
kxα

α
−
ω tα

α

)))−2

.

(3.9)

Solution Set. 2: Thus, case 1 based on Eq (1.2) has been analyzed. As a result, the ensuing singular
solitary wave solutions could be received under the condition (µ > 0).

F3(x, t) = c0 +
4

√
−
−9 c2

2ω4 − 9 c2
2k4 − 18 c2

2k2ω2

4ω2k2 − 16ω kc2

×

(
−µ b + a

√
µ tan

(
√
µ

(
kxα

α
−
ω tα

α

))) (
a + b

√
µ tan

(
√
µ

(
kxα

α
−
ω tα

α

)))−1

+ c2

(
−µ b + a

√
µ tan

(
√
µ

(
kxα

α
−
ω tα

α

)))2 (
a + b

√
µ tan

(
√
µ

(
kxα

α
−
ω tα

α

)))−2

,

(3.10)

or

F4(x, t) = c0 +
4

√
−
−9 c2

2ω4 − 9 c2
2k4 − 18 c2

2k2ω2

4ω2k2 − 16ω kc2

×

(
−µ b − a

√
µ cot

(
√
µ

(
kxα

α
−
ω tα

α

))) (
a − b

√
µ cot

(
√
µ

(
kxα

α
−
ω tα

α

)))−1

+ c2

(
−µ b − a

√
µ cot

(
√
µ

(
kxα

α
−
ω tα

α

)))2 (
a − b

√
µ cot

(
√
µ

(
kxα

α
−
ω tα

α

)))−2

.

(3.11)

Solution Set. 3: Thus, case 1 based on Eq (1.2) has been analyzed. As a result, the ensuing singular
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solitary wave solutions could be received under the condition (µ = 0).

F5(x, t) = c0 +
4

√
−
−9 c2

2ω4 − 9 c2
2k4 − 18 c2

2k2ω2

4ω2k2 − 16ω kc2

×

−µ b − a
(
kxα

α
−
ω tα

α

)−1 a − b
(
kxα

α
−
ω tα

α

)−1−1

+ c2

−µ b − a
(
kxα

α
−
ω tα

α

)−12 a − b
(
kxα

α
−
ω tα

α

)−1−2

.

(3.12)

Solution Set. 4: Thus, case 2 based on Eq (1.2) has been analyzed. Further, the following specific
parameters have been used. As a result, the ensuing singular solitary wave solutions could be received
under the condition (µ < 0).

µ = −4/3
c1

2

ω4 ,
(3.13)

F6(x, t) =
2/3 ic1

2

ω2 + c1

(
−µ b − a

√
−µ tanh

(
√
−µ

(
kxα

α
−
ω tα

α

))) (
a − b

√
−µ tanh

(
√
−µ

(
kxα

α
−
ω tα

α

)))−1

− 1/4 iω2
(
−µ b − a

√
−µ tanh

(
√
−µ

(
kxα

α
−
ω tα

α

)))2 (
a − b

√
−µ tanh

(
√
−µ

(
kxα

α
−
ω tα

α

)))−2

,

(3.14)

or

F7(x, t) =
2/3 ic1

2

ω2 + c1

(
−µ b − a

√
−µ coth

(
√
−µ

(
kxα

α
−
ω tα

α

))) (
a − b

√
−µ coth

(
√
−µ

(
kxα

α
−
ω tα

α

)))−1

− 1/4 iω2
(
−µ b − a

√
−µ coth

(
√
−µ

(
kxα

α
−
ω tα

α

)))2 (
a − b

√
−µ coth

(
√
−µ

(
kxα

α
−
ω tα

α

)))−2

.

(3.15)

Solution Set. 5: Thus, case 2 based on Eq (1.2) has been analyzed. As a result, the ensuing singular
solitary wave solutions could be received under the condition (µ > 0).

F8(x, t) =
2/3 ic1

2

ω2 + c1

(
−µ b + a

√
µ tan

(
√
µ

(
kxα

α
−
ω tα

α

))) (
a + b

√
µ tan

(
√
µ

(
kxα

α
−
ω tα

α

)))−1

− 1/4 iω2
(
−µ b + a

√
µ tan

(
√
µ

(
kxα

α
−
ω tα

α

)))2 (
a + b

√
µ tan

(
√
µ

(
kxα

α
−
ω tα

α

)))−2

,

(3.16)

or

F9(x, t) =
2/3 ic1

2

ω2 + c1

(
−µ b − a

√
µ cot

(
√
µ

(
kxα

α
−
ω tα

α

))) (
a − b

√
µ cot

(
√
µ

(
kxα

α
−
ω tα

α

)))−1

− 1/4 iω2
(
−µ b − a

√
µ cot

(
√
µ

(
kxα

α
−
ω tα

α

)))2 (
a − b

√
µ cot

(
√
µ

(
kxα

α
−
ω tα

α

)))−2

.

(3.17)
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Solution Set. 6: Thus, case 2 based on Eq (1.2) has been analyzed. As a result, the ensuing singular
solitary wave solutions could be received under the condition (µ = 0).

F10(x, t) =
2/3 ic1

2

ω2 + c1

−µ b − a
(
kxα

α
−
ω tα

α

)−1 a − b
(
kxα

α
−
ω tα

α

)−1−1

− 1/4 iω2

−µ b − a
(
kxα

α
−
ω tα

α

)−12 a − b
(
kxα

α
−
ω tα

α

)−1−2

.

(3.18)

Solution Set. 7: Thus, case 2 based on Eq (1.2) has been analyzed. Further, the following specific
parameters have been used. As a result, the ensuing singular solitary wave solutions could be received
under the condition (µ < 0).

µ = −1/8
k2 + ω2 − 4ω kc0

ω2k2 . (3.19)

F11(x, t) = c0 −
32 c0

(
k2 − 2ω kc0 + ω2

)
ω2k2

(
−µ b − a

√
−µ tanh

(√
−µ

(
kxα
α
− ω tα

α

)))2

(
k2 + ω2 − 4ω kc0

)2
(
a − b

√
−µ tanh

(√
−µ

(
kxα
α
− ω tα

α

)))2 , (3.20)

or

F12(x, t) = c0 −
32 c0

(
k2 − 2ω kc0 + ω2

)
ω2k2

(
−µ b − a

√
−µ coth

(√
−µ

(
kxα
α
− ω tα

α

)))2

(
k2 + ω2 − 4ω kc0

)2
(
a − b

√
−µ coth

(√
−µ

(
kxα
α
− ω tα

α

)))2 . (3.21)

Solution Set. 8: Thus, case 2 based on Eq (1.2) has been analyzed. As a result, the ensuing singular
solitary wave solutions could be received under the condition (µ > 0).

F13(x, t) = c0 −
32 c0

(
k2 − 2ω kc0 + ω2

)
ω2k2

(
−µ b + a

√
µ tan

(√
µ
(

kxα
α
− ω tα

α

)))2

(
k2 + ω2 − 4ω kc0

)2
(
a + b

√
µ tan

(√
µ
(

kxα
α
− ω tα

α

)))2 , (3.22)

or

F14(x, t) = c0 −
32 c0

(
k2 − 2ω kc0 + ω2

)
ω2k2

(
−µ b − a

√
µ cot

(√
µ
(

kxα
α
− ω tα

α

)))2

(
k2 + ω2 − 4ω kc0

)2
(
a − b

√
µ cot

(√
µ
(

kxα
α
− ω tα

α

)))2 . (3.23)

Solution Set. 9: Thus, case 2 based on Eq (1.2) has been analyzed. As a result, the ensuing singular
solitary wave solutions could be received under the condition (µ = 0).

F15(x, t) = c0 −

32 c0

(
k2 − 2ω kc0 + ω2

)
ω2k2

(
−µ b − a

(
kxα
α
− ω tα

α

)−1
)2

(
k2 + ω2 − 4ω kc0

)2
(
a − b

(
kxα
α
− ω tα

α

)−1
)2 . (3.24)

Solution Set. 10: Thus, case 2 based on Eq (1.2) has been analyzed. Further, the following specific
parameters have been used. As a result, the ensuing singular solitary wave solutions could be received
under the condition (µ < 0), and
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c2 = 1/5
ω k

(
8 k3ω c0 + 3ω4 + 3 k4 + 6ω2k2 + 8ω3kc0 − 16ω2k2c0

2
)

(
k2 + ω2 − 4ω kc0

)2 ,

µ = −1/8
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ω2k2 ,
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3
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√
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α
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(3.25)

or

F17(x, t) =

3
64

(
k2 + ω2 − 4ω kc0

)2 (
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−µ coth
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−µ
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α
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(3.26)

Solution Set. 11: Thus, case 2 based on Eq (1.2) has been analyzed. As a result, the ensuing singular
solitary wave solutions could be received under the condition (µ > 0).

F18(x, t) =

3
64
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√
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(√
µ
(

kxα
α
− ω tα

α

)))2

+ c0 +
c2

(
−µ b + a

√
µ tan

(√
µ
(

kxα
α
− ω tα

α

)))2(
a + b

√
µ tan

(√
µ
(

kxα
α
− ω tα

α

)))2 ,

(3.27)

or

F19(x, t) =

3
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k2 + ω2 − 4ω kc0
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)))2
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(3.28)

Solution Set. 12: Thus, case 2 based on Eq (1.2) has been analyzed. As a result, the ensuing singular
solitary wave solutions could be received under the condition (µ = 0).

F20(x, t) =

3
64

(
k2 + ω2 − 4ω kc0

)2
(
a − b

(
kxα
α
− ω tα

α

)−1
)2
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(
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(
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(
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α

)−1
)2 . (3.29)
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4. Results and discussion

This investigation seeks to develop a new scientific method deeply rooted in a powerful framework
to decompose the fractional SRLW equation. The equation, expressed in terms of fractional derivatives,
is a daunting task with sophisticated techniques to be employed due to its complexity. Using
Bäcklund transformation, fractional partial differential equations are transformed into ODEs that are
transformation-friendly through additional methods. This enables a thorough examination of equation
solutions. Additionally, the resolution of the equation system and its series solutions are provided. The
solutions are decomposed via the Riccati-Bernoulli sub-ODE algorithm. Three families of solutions
are obtained: hyperbolic, rational, and trigonometric. Consequently, a variety of analytical solutions,
all different, are obtained that are a reflection of the several mathematical structures present in the
fractional SRLW equation. In Tables 1 and 2, we emphasize on the distinctions between our technique
and the traditional Sine-Gordon and modified extended tanh methods on the same model. Our method
provides a wider spectrum of solutions, including trigonometric, hyperbolic, and rational, whereas the
Sine-Gordon type equation only produces hyperbolic and modified tanh functions. This shows how our
approach is more general than the standard approach, and thus capable of capturing a greater variety
of physical situations. Furthermore, while the Sine-Gordon method studies the model in the time-
fractional setup, our work broadens the examination of the model to the space-time fractional context,
offering a more encompassing discussion of the model behavior.

The several solutions obtained in this work, including integer and fractional order solutions, present
different kinds of solitary wave phenomena, as kink, anti-kink, periodic, and breather-like profiles,
which have physical significances. In optical fiber communications, periodic solitons are critical
because they prevent information from being distorted during transmission over long distances, and
kink solitons are critical for understanding topological line solitons in particle physics and dislocations
in solids. Anti-kink solitons are appropriate for developing the stone-like phenomena for further
examination in condensed particle physics, particularly for cracks in nanostructures or biological tissue.
The fractional-order analysis expands the research at hand by providing more precise descriptions of
waves in complex physical structures where multi-scaling and time-memory interactions are important.
We believe that this new approach, which differs from the earlier methods confined to integer-order
models, offers fresh perspectives on soliton behavior and their possible use; this explains the novelty
of our work. The comparison table and graphical solutions provided in the present study clearly reveal
the specificity of these findings as compared to previous studies. Additionally, breather solitons have
been crucial for nonlinear optics and oceanography, where they appear as rogue waves and produce
short light pulses when they encounter a beam. Using the software environment MATLAB, we have
applied meticulous adjustments of specific parameter values to accurately match the exact solutions,
allowing the different periodic and single solutions to be described. As a result, the following graphical
depictions provide sufficient material to make them real and comprehend the properties of solutions,
hence being more capable of analyzing their dynamism.
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Table 1. Comparison of the fractional SRLW with the alternative approach, specifically the modified extended tanh method.

present method modified extended tanh method [13]

Case I: η < 0 F12(x, t) = c0 −
32 c0(k2−2ω kc0+ω2)ω2k2
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)−1 For b = 0, no solutions were obtained using the modified
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(
a−b( kxα

α −
ω tα
α )−1

)2 extended tanh approach for the fractional SRLW equation

Table 2. Comparison of the fractional SRLW with the alternative approach, specifically the Sine-Gordon expansion method.

present method Sine-Gordon expansion method [21]

Case I: η < 0 F11(x, t) = c0
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In Figure 1, we represent a detailed visualization of solution (F1), including its real and imaginary
parts. Overall, solution (F1) has been accurately portrayed in lump-type kink and grey kink structure
plots in terms of its evolution and transformation with respect to different spatial and temporal scaling.
Hence, through various spatial and temporal scaling, (F1) demonstrates intricate behaviors that are
not necessarily evident from simplistic graphs. This solution notably demonstrates propagation along
the x-axis as time elapses, which retains its shape and amplitude. Notably, the way (F1) propagates
depends on the parameter (α). It could be realized that the changes in the value of the parameter (α)
have an impact over the solution (F1)’s propagation characteristics, such as wave speed and amplitude.
In this relationship, one is able to appreciate the part played by fractional order with regard to the
dynamics of nonlinear waves. In general, analyzing this figure contributes to gaining an understanding
of real-life processes, such as fluid dynamics, soliton theory, and wave propagation.

(a) 2D representation of the real component of (F1)
providing insight into the physical manifestations of
the underlying phenomenon.

(b) Depiction of the real component of the solution
(F1), showcasing variations relative to (α), elucidating
its influence on the system characteristics.

(c) 2D visualization of the imaginary component of
the (F1) highlighting the complex nature of the system
under investigation.

(d) 2D graphical representation of the imaginary
component of (F1) demonstrating its dependence on
(α) and its impact on the system complex dynamics.

Figure 1. Visualization illustrating both the real and imaginary components of solution (F1),
offering a comprehensive portrayal of the system behavior and dynamics.
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In Figure 2, we simulate solution (F6) for different values of (α) using a variety of parametric
configurations. (F6) for α = 0.1, 0.2, 0.3 shows propagation along the x-axis, remaining in the same
shape and amplitude during the simulation. However, the nature of propagation is different between
different values of (α). For α < 1, as shown, the propagation is not linear. The non-linearity is
observed when considering that the propagation appears to have varying speeds and does not continue
at the same constant speed. On the other hand, it presented at α = 1.

(a) 2D representation of the real component of (F6)
providing insight into the physical manifestations of
the underlying phenomenon.

(b) Depiction of the real component of the solution
(F6), showcasing variations relative to (α), elucidating
its influence on the system characteristics.

(c) 2D visualization of the imaginary component of
the (F6) highlighting the complex nature of the system
under investigation.

(d) 2D graphical representation of the imaginary
component of (F6) demonstrating its dependence on
(α) and its impact on the system complex dynamics.

Figure 2. Visualization illustrating both the real and imaginary components of solution (F6),
offering a comprehensive portrayal of the system behavior and dynamics.

In Figures 3 and 4 we illustrate the relationship between the real and imaginary parts of solution
(F10) at different levels of granularity. By presenting kink and grey kink data, this visualization allows
one to obtain a thorough understanding of the fundamental features and behavior in time of this solution
at different stages and scales. Notably, the propagation of (F10) is dependent on the value of (α). This
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parameter determines the dynamic features of the solution and, as a result, determines the behavior of
its propagation. Thus, this figure clearly shows how the dynamics of the solution (F10) depend on the
value of (α) in both temporal and spatial domains. In particular, propagation characteristics of (F10)
strongly depend on the value of (α). Variations in (α) reflect alterations in the overall nature of the
solution, with respect to the rates involved and their magnitudes. This relationship clearly points to the
centrality of fractional order in the description of wave nonlinear behaviors. The conclusions drawn
from analysis of this figure are useful in interpreting the effects of parameters such as (α) for practical
cases in fluid dynamics and wave propagation applications.

(a) 2D representation of the real component
of (F10) providing insight into the physical
manifestations of the underlying phenomenon.

(b) 3D representation of the real component
of (F10) providing insight into the physical
manifestations of the underlying phenomenon.

(c) 2D representation of the real component
of (F10) providing insight into the physical
manifestations of the underlying phenomenon.

Figure 3. Visualization illustrating the real components of solution (F10), offering a
comprehensive portrayal of the system behavior and dynamics.

AIMS Mathematics Volume 9, Issue 11, 31142–31162.



31157

(a) 2D representation of the Imag component of (F10)
providing insight into the physical manifestations of the
underlying phenomenon.

(b) 3D representation of the Imag component of (F10)
providing insight into the physical manifestations of the
underlying phenomenon.

(c) 2D representation of the Imag component of (F10)
providing insight into the physical manifestations of the
underlying phenomenon.

Figure 4. Visualization illustrating the image components of solution (F10), offering a
comprehensive portrayal of the system behavior and dynamics.

Figure 5 displays the graph of the function (F16) for α = 0.7, 0.8, 0.9 on a limited domain. From
the observations, it can be inferred that the first pulse moves along the x-interval as it maintains both
its shape and amplitude in time. However, the velocity of propagation solely depends on (α). Where
α < 1, the propagation accelerates initially, hence quickly traveling over a limited time. Later in time,
the propagation velocity decreases, causing it to move slower. On the other hand, α = 1 implies a
uniform propagation velocity.
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(a) 2D representation of the solution (F16), showing its
impact on the underlying physical phenomenon.

(b) 3D representation of the solution (F16), providing insight
into its complex behavior.

(c) Variation of the solution (F16) with respect to the
parameter α, highlighting its influence on system dynamics.

Figure 5. Visualizations of solution (F16), offering a detailed portrayal of system behavior
across different representations and parameter variations.

Figure 6 shows the evolution of solution (F17), which is a bright kink soliton on various (α), varying
over a finite domain of independent variables. The initial pulse is displaced along the spatial axis while
retaining its form and amplitude. The only influence exerted by (α) is the speed which it moves at, due
to it simply being a multipler for our time variable. For α < 1, the pulse waves nonlinearly, however it
becomes linear for α = 1.
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(a) 2D representation of (F17) providing insight into the
physical manifestations of the underlying phenomenon.

(b) Depiction of the solution (F1), showcasing variations
relative to (α), elucidating its influence on the system
characteristics.

Figure 6. Visualization illustrating the solution (F17), offering a comprehensive portrayal of
the system behavior and dynamics.

5. Conclusions

Here, we employed the Riccati-Bernoulli sub-ODE technique, which has been identified recently as
being efficient, to investigate the solitary wave solutions of the space-time fractional SRLW equation.
This led us to find new exact solutions of fractional equations in trigonometric, hyperbolic, and
rational forms. These findings suggest that there are research directions that can be explored to
further understand these concepts. Consequently, the solutions can be used to investigate a number
of physical occupations, including flow through the channels between bubbles, interactions between
gravity and capillarity in thin liquid films, weakly nonlinear ion acoustic waves, and space-charges
waves. Moreover, they provide information for dimensionless fluid velocity during decay situations.
As far as we are aware, there is no prior work that drew similar conclusions, which speaks to the novelty
of our work. This method seems to have great prospects to obtain new solitary waves in different
branches of science, and to develop techniques in obstacle, free, moving, or contact problems..

In future work, it remains to apply the Riccati-Bernoulli Sub-ODE method to other types of
nonlinear equations and explore the effects of other fractional orders of derivatives. Moreover,
numerical simulations of the proposed solutions and the corresponding experimental verifications may
give deeper understanding about their possibilities for use in fluid dynamics and waves propagations.
Further efforts to analyze the applicability of the method to more complex systems or higher-
dimensional models will also be considered in expanding this study.
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