Research article Special Issues

Explicit formulae for Bernoulli numbers

  • Received: 10 August 2024 Revised: 16 September 2024 Accepted: 25 September 2024 Published: 29 September 2024
  • MSC : Primary 11B68, Secondary 05A10

  • By examining the connection coefficients, we systematically review and extend (with an extra integer parameter) several double sum expressions for the Bernoulli numbers. New summation formulae are also established explicitly.

    Citation: Nadia N. Li, Wenchang Chu. Explicit formulae for Bernoulli numbers[J]. AIMS Mathematics, 2024, 9(10): 28170-28194. doi: 10.3934/math.20241366

    Related Papers:

  • By examining the connection coefficients, we systematically review and extend (with an extra integer parameter) several double sum expressions for the Bernoulli numbers. New summation formulae are also established explicitly.



    加载中


    [1] T. Agoh, Shortened recurrence relations for generalized Bernoulli numbers and polynomials, J. Number Theory, 176 (2017), 149–173. https://doi.org/10.1016/j.jnt.2016.12.014 doi: 10.1016/j.jnt.2016.12.014
    [2] T. Agoh, K. Dilcher, Convolution identities and lacunary recurrences for Bernoulli numbers, J. Number Theory, 124 (2007), 105–122. https://doi.org/10.1016/j.jnt.2006.08.009 doi: 10.1016/j.jnt.2006.08.009
    [3] T. M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer, 1976. https://doi.org/10.1007/978-1-4757-5579-4
    [4] T. M. Apostol, A primer on Bernoulli numbers and polynomials, Math. Mag., 83 (2008), 178–190. https://doi.org/10.1080/0025570X.2008.11953547 doi: 10.1080/0025570X.2008.11953547
    [5] G. Arfken, Bernoulli numbers, Euler-Maclaurin formula, In: Mathematical methods for physicists, 3 Eds., Orlando: Academic Press, 1985, 327–338.
    [6] A. T. Benjamin, J. Lentfer, T. C. Martinez, Counting on Euler and Bernoulli number identities, Fibonacci Quart., 58 (2020), 30–33. https://doi.org/10.1080/00150517.2020.12427550 doi: 10.1080/00150517.2020.12427550
    [7] H. Bergmann, Eine explizite darstellung der bernoullischen zahlen, Math. Nachr., 34 (1967), 377–378. https://doi.org/10.1002/mana.1967.3210340509 doi: 10.1002/mana.1967.3210340509
    [8] L. Carlitz, Generalized Bernoulli and Euler numbers, Duke Math. J., 8 (1941), 585–589. https://doi.org/10.1215/S0012-7094-41-00850-5 doi: 10.1215/S0012-7094-41-00850-5
    [9] L. Carlitz, Remark on a formula for the Bernoulli numbers, Proc. Amer. Math. Soc., 4 (1953), 400–401.
    [10] L. Carlitz, Multiplication formulas for generalized Bernoulli and Euler polynomials, Duke Math. J., 27 (1960), 537–545. https://doi.org/10.1215/S0012-7094-60-02751-4 doi: 10.1215/S0012-7094-60-02751-4
    [11] Y. Chen, Multiple convolutions on Bernoulli numbers, Euler numbers and Genocchi numbers, Pure Math., 14 (2024), 433–443. https://doi.org/10.12677/PM.2024.142042 doi: 10.12677/PM.2024.142042
    [12] W. Chu, Reciprocal formulae for convolutions of Bernoulli and Euler polynomials, Rend. Mat. Appl., 32 (2012), 17–74.
    [13] W. Chu, P. Magli, Summation formulae on reciprocal sequences, Eur. J. Combin., 28 (2007), 921–930. https://doi.org/10.1016/j.ejc.2005.10.012 doi: 10.1016/j.ejc.2005.10.012
    [14] W. Chu, C. Y. Wang, Convolution formulae for Bernoulli numbers, Integr. Transf. Spec. Funct., 21 (2010), 437–457. https://doi.org/10.1080/10652460903360861 doi: 10.1080/10652460903360861
    [15] W. Chu, X. Y. Wang, Reciprocal relations for Bernoulli and Euler numbers/polynomials, Integr. Transf. Spec. Funct., 29 (2018), 831–841. https://doi.org/10.1080/10652469.2018.1501047 doi: 10.1080/10652469.2018.1501047
    [16] W. Chu, R. R. Zhou, Convolutions of the Bernoulli and Euler polynomials, Sarajevo J. Math., 6 (2010), 147–163. https://doi.org/10.5644/SJM.06.2.01 doi: 10.5644/SJM.06.2.01
    [17] L. Comtet, Advanced combinatorics, The Art of Finite and Infinite Expansions, Springer Dordrecht, 1974. https://doi.org/10.1007/978-94-010-2196-8
    [18] F. Lee Cook, A simple explicit formula for the Bernoulli numbers, College Math. J., 13 (1982), 273–274.
    [19] K. Dilcher, Sums of products of Bernoulli numbers, J. Number Theory, 60 (1996), 23–41. https://doi.org/10.1006/jnth.1996.0110 doi: 10.1006/jnth.1996.0110
    [20] L. Fekih-Ahmed, On some explicit formulas for Bernoulli numbers and polynomials, arXiv, 2012. https://doi.org/10.48550/arXiv.1106.5247
    [21] H. L. Garabedian, A new formula for the Bernoulli numbers, Bull. Amer. Math. Soc., 46 (1940), 531–533. https://doi.org/10.1090/S0002-9904-1940-07255-6 doi: 10.1090/S0002-9904-1940-07255-6
    [22] I. M. Gessel, On Miki's identity for Bernoulli numbers, J. Number Theory, 110 (2005), 75–82. https://doi.org/10.1016/j.jnt.2003.08.010 doi: 10.1016/j.jnt.2003.08.010
    [23] H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Mon., 79 (1972), 44–51. https://doi.org/10.1080/00029890.1972.11992980 doi: 10.1080/00029890.1972.11992980
    [24] H. W. Gould, Table for combinatorial numbers and associated identities: Table Ⅱ, Edited and compiled by Jocelyn Quaintance, unpublished work, 2010.
    [25] H. W. Gould, J. Quaintance, Bernoulli numbers and a new binomial transform identity, J. Integer Seq., 17 (2014), 14.2.2.
    [26] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics, 2 Eds., Massachusetts: Addison-Wesley, 1994.
    [27] E. R. Hansen, A table of series and products, Prentice-Hall Inc., 1975.
    [28] J. Higgins, Double series for the Bernoulli and Euler numbers, J. London Math. Soc., 2 (1970), 722–726. https://doi.org/10.1112/jlms/2.Part_4.722 doi: 10.1112/jlms/2.Part_4.722
    [29] C. Jordan, Calculus of finite differences, 2 Eds., Chelsea Publishing Company, 1950.
    [30] M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Janpan Acad. Ser. A Math. Sci., 71 (1995), 192–193. https://doi.org/10.3792/pjaa.71.192 doi: 10.3792/pjaa.71.192
    [31] T. Komatsu, C. Pita-Ruiz, Several explicit formulae for Bernoulli polynomials, Math. Commun., 21 (2016), 127–140.
    [32] T. Komatsu, B. K. Patel, C. Pita-Ruiz, Several formulas for Bernoulli numbers and polynomials, Adv. Math. Commun., 17 (2023), 522–535. https://doi.org/10.3934/amc.2021006 doi: 10.3934/amc.2021006
    [33] Q. M. Luo, A new proof of the formula for the Bernoulli numbers, Int. J. Math. Educ. Sci. Technol., 36 (2005), 551–553. https://doi.org/10.1080/00207390412331336229 doi: 10.1080/00207390412331336229
    [34] Y. Matiyasevich, Identities with Bernoulli numbers, 2006. Available from: http://logic.pdmi.ras.ru/~yumat/Journal/Bernoulli/bernulli.htm.
    [35] M. Merca, Bernoulli numbers and symmetric functions, RACSAM, 114 (2020), 20. https://doi.org/10.1007/s13398-019-00774-6 doi: 10.1007/s13398-019-00774-6
    [36] H. Miki, A relation between Bernoulli numbers, J. Number Theory, 10 (1978), 297–302. https://doi.org/10.1016/0022-314X(78)90026-4 doi: 10.1016/0022-314X(78)90026-4
    [37] H. Momiyama, A new recurrence formula for Bernoulli numbers, Fibonacci Quart., 39 (2001), 285–288. https://doi.org/10.1080/00150517.2001.12428736 doi: 10.1080/00150517.2001.12428736
    [38] G. J. Morrow, Bernoulli number identities for associated Stirling numbers and derangements, Australas. J. Comb., 88 (2024), 22–51.
    [39] O. J. Munch, Om Potensproduktsummer, Nord. Mat. Tidsskr., 7 (1959), 5–19.
    [40] H. Pan, Z. W. Sun, New identities involving Bernoulli and Euler polynomials, J. Combin. Theory, Ser. A, 113 (2006), 156–175. https://doi.org/10.1016/j.jcta.2005.07.008 doi: 10.1016/j.jcta.2005.07.008
    [41] C. Pita-Ruiz, Carlitz-type and other Bernoulli identities, J. Integer Seq., 19 (2016), 16.1.8.
    [42] H. Prodinger, A short proof of Carlitz's Bernoulli number identity, J. Integer Seq., 17 (2014), 14.4.1.
    [43] J. Quaintance, H. W. Gould, Combinatorial identities for stirling numbers, World Scientific, 2016. https://doi.org/10.1142/9821
    [44] J. Riordan, Combinatorial identities, New York: John Wiley & Sons, 1968.
    [45] E. B. Shanks, A finite formula for the Bernoulli numbers, Amer. Math. Monthly, 59 (1952), 496.
    [46] S. Shirai, K. Sato, Some identities involving Bernoulli and Stirling numbers, J. Number Theory, 90 (2001), 130–142. https://doi.org/10.1006/jnth.2001.2659 doi: 10.1006/jnth.2001.2659
    [47] K. R. Stromberg An introduction to classical real analysis, Belmont, California: Wadsworth, 1981.
    [48] P. G. Todorov, Explicit formulas for the Bernoulli and Euler polynomials and numbers, Abh. Math. Semin. Univ. Hambg., 61 (1991), 175–180. https://doi.org/10.1007/BF02950761 doi: 10.1007/BF02950761
    [49] P. Vassilev, M. V. Missana, On one remarkable identity involving Bernoulli numbers, Notes Number Theory Discrete Math., 11 (2005), 22–24.
    [50] J. Worpitzky, Studien üer die Bernoullischen und Eulerschen Zahlen, J. Reine Angew. Math., 94 (1883), 203–232. https://doi.org/10.1515/crll.1883.94.203 doi: 10.1515/crll.1883.94.203
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(197) PDF downloads(21) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog