By examining the connection coefficients, we systematically review and extend (with an extra integer parameter) several double sum expressions for the Bernoulli numbers. New summation formulae are also established explicitly.
Citation: Nadia N. Li, Wenchang Chu. Explicit formulae for Bernoulli numbers[J]. AIMS Mathematics, 2024, 9(10): 28170-28194. doi: 10.3934/math.20241366
By examining the connection coefficients, we systematically review and extend (with an extra integer parameter) several double sum expressions for the Bernoulli numbers. New summation formulae are also established explicitly.
[1] | T. Agoh, Shortened recurrence relations for generalized Bernoulli numbers and polynomials, J. Number Theory, 176 (2017), 149–173. https://doi.org/10.1016/j.jnt.2016.12.014 doi: 10.1016/j.jnt.2016.12.014 |
[2] | T. Agoh, K. Dilcher, Convolution identities and lacunary recurrences for Bernoulli numbers, J. Number Theory, 124 (2007), 105–122. https://doi.org/10.1016/j.jnt.2006.08.009 doi: 10.1016/j.jnt.2006.08.009 |
[3] | T. M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer, 1976. https://doi.org/10.1007/978-1-4757-5579-4 |
[4] | T. M. Apostol, A primer on Bernoulli numbers and polynomials, Math. Mag., 83 (2008), 178–190. https://doi.org/10.1080/0025570X.2008.11953547 doi: 10.1080/0025570X.2008.11953547 |
[5] | G. Arfken, Bernoulli numbers, Euler-Maclaurin formula, In: Mathematical methods for physicists, 3 Eds., Orlando: Academic Press, 1985, 327–338. |
[6] | A. T. Benjamin, J. Lentfer, T. C. Martinez, Counting on Euler and Bernoulli number identities, Fibonacci Quart., 58 (2020), 30–33. https://doi.org/10.1080/00150517.2020.12427550 doi: 10.1080/00150517.2020.12427550 |
[7] | H. Bergmann, Eine explizite darstellung der bernoullischen zahlen, Math. Nachr., 34 (1967), 377–378. https://doi.org/10.1002/mana.1967.3210340509 doi: 10.1002/mana.1967.3210340509 |
[8] | L. Carlitz, Generalized Bernoulli and Euler numbers, Duke Math. J., 8 (1941), 585–589. https://doi.org/10.1215/S0012-7094-41-00850-5 doi: 10.1215/S0012-7094-41-00850-5 |
[9] | L. Carlitz, Remark on a formula for the Bernoulli numbers, Proc. Amer. Math. Soc., 4 (1953), 400–401. |
[10] | L. Carlitz, Multiplication formulas for generalized Bernoulli and Euler polynomials, Duke Math. J., 27 (1960), 537–545. https://doi.org/10.1215/S0012-7094-60-02751-4 doi: 10.1215/S0012-7094-60-02751-4 |
[11] | Y. Chen, Multiple convolutions on Bernoulli numbers, Euler numbers and Genocchi numbers, Pure Math., 14 (2024), 433–443. https://doi.org/10.12677/PM.2024.142042 doi: 10.12677/PM.2024.142042 |
[12] | W. Chu, Reciprocal formulae for convolutions of Bernoulli and Euler polynomials, Rend. Mat. Appl., 32 (2012), 17–74. |
[13] | W. Chu, P. Magli, Summation formulae on reciprocal sequences, Eur. J. Combin., 28 (2007), 921–930. https://doi.org/10.1016/j.ejc.2005.10.012 doi: 10.1016/j.ejc.2005.10.012 |
[14] | W. Chu, C. Y. Wang, Convolution formulae for Bernoulli numbers, Integr. Transf. Spec. Funct., 21 (2010), 437–457. https://doi.org/10.1080/10652460903360861 doi: 10.1080/10652460903360861 |
[15] | W. Chu, X. Y. Wang, Reciprocal relations for Bernoulli and Euler numbers/polynomials, Integr. Transf. Spec. Funct., 29 (2018), 831–841. https://doi.org/10.1080/10652469.2018.1501047 doi: 10.1080/10652469.2018.1501047 |
[16] | W. Chu, R. R. Zhou, Convolutions of the Bernoulli and Euler polynomials, Sarajevo J. Math., 6 (2010), 147–163. https://doi.org/10.5644/SJM.06.2.01 doi: 10.5644/SJM.06.2.01 |
[17] | L. Comtet, Advanced combinatorics, The Art of Finite and Infinite Expansions, Springer Dordrecht, 1974. https://doi.org/10.1007/978-94-010-2196-8 |
[18] | F. Lee Cook, A simple explicit formula for the Bernoulli numbers, College Math. J., 13 (1982), 273–274. |
[19] | K. Dilcher, Sums of products of Bernoulli numbers, J. Number Theory, 60 (1996), 23–41. https://doi.org/10.1006/jnth.1996.0110 doi: 10.1006/jnth.1996.0110 |
[20] | L. Fekih-Ahmed, On some explicit formulas for Bernoulli numbers and polynomials, arXiv, 2012. https://doi.org/10.48550/arXiv.1106.5247 |
[21] | H. L. Garabedian, A new formula for the Bernoulli numbers, Bull. Amer. Math. Soc., 46 (1940), 531–533. https://doi.org/10.1090/S0002-9904-1940-07255-6 doi: 10.1090/S0002-9904-1940-07255-6 |
[22] | I. M. Gessel, On Miki's identity for Bernoulli numbers, J. Number Theory, 110 (2005), 75–82. https://doi.org/10.1016/j.jnt.2003.08.010 doi: 10.1016/j.jnt.2003.08.010 |
[23] | H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Mon., 79 (1972), 44–51. https://doi.org/10.1080/00029890.1972.11992980 doi: 10.1080/00029890.1972.11992980 |
[24] | H. W. Gould, Table for combinatorial numbers and associated identities: Table Ⅱ, Edited and compiled by Jocelyn Quaintance, unpublished work, 2010. |
[25] | H. W. Gould, J. Quaintance, Bernoulli numbers and a new binomial transform identity, J. Integer Seq., 17 (2014), 14.2.2. |
[26] | R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics, 2 Eds., Massachusetts: Addison-Wesley, 1994. |
[27] | E. R. Hansen, A table of series and products, Prentice-Hall Inc., 1975. |
[28] | J. Higgins, Double series for the Bernoulli and Euler numbers, J. London Math. Soc., 2 (1970), 722–726. https://doi.org/10.1112/jlms/2.Part_4.722 doi: 10.1112/jlms/2.Part_4.722 |
[29] | C. Jordan, Calculus of finite differences, 2 Eds., Chelsea Publishing Company, 1950. |
[30] | M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Janpan Acad. Ser. A Math. Sci., 71 (1995), 192–193. https://doi.org/10.3792/pjaa.71.192 doi: 10.3792/pjaa.71.192 |
[31] | T. Komatsu, C. Pita-Ruiz, Several explicit formulae for Bernoulli polynomials, Math. Commun., 21 (2016), 127–140. |
[32] | T. Komatsu, B. K. Patel, C. Pita-Ruiz, Several formulas for Bernoulli numbers and polynomials, Adv. Math. Commun., 17 (2023), 522–535. https://doi.org/10.3934/amc.2021006 doi: 10.3934/amc.2021006 |
[33] | Q. M. Luo, A new proof of the formula for the Bernoulli numbers, Int. J. Math. Educ. Sci. Technol., 36 (2005), 551–553. https://doi.org/10.1080/00207390412331336229 doi: 10.1080/00207390412331336229 |
[34] | Y. Matiyasevich, Identities with Bernoulli numbers, 2006. Available from: http://logic.pdmi.ras.ru/~yumat/Journal/Bernoulli/bernulli.htm. |
[35] | M. Merca, Bernoulli numbers and symmetric functions, RACSAM, 114 (2020), 20. https://doi.org/10.1007/s13398-019-00774-6 doi: 10.1007/s13398-019-00774-6 |
[36] | H. Miki, A relation between Bernoulli numbers, J. Number Theory, 10 (1978), 297–302. https://doi.org/10.1016/0022-314X(78)90026-4 doi: 10.1016/0022-314X(78)90026-4 |
[37] | H. Momiyama, A new recurrence formula for Bernoulli numbers, Fibonacci Quart., 39 (2001), 285–288. https://doi.org/10.1080/00150517.2001.12428736 doi: 10.1080/00150517.2001.12428736 |
[38] | G. J. Morrow, Bernoulli number identities for associated Stirling numbers and derangements, Australas. J. Comb., 88 (2024), 22–51. |
[39] | O. J. Munch, Om Potensproduktsummer, Nord. Mat. Tidsskr., 7 (1959), 5–19. |
[40] | H. Pan, Z. W. Sun, New identities involving Bernoulli and Euler polynomials, J. Combin. Theory, Ser. A, 113 (2006), 156–175. https://doi.org/10.1016/j.jcta.2005.07.008 doi: 10.1016/j.jcta.2005.07.008 |
[41] | C. Pita-Ruiz, Carlitz-type and other Bernoulli identities, J. Integer Seq., 19 (2016), 16.1.8. |
[42] | H. Prodinger, A short proof of Carlitz's Bernoulli number identity, J. Integer Seq., 17 (2014), 14.4.1. |
[43] | J. Quaintance, H. W. Gould, Combinatorial identities for stirling numbers, World Scientific, 2016. https://doi.org/10.1142/9821 |
[44] | J. Riordan, Combinatorial identities, New York: John Wiley & Sons, 1968. |
[45] | E. B. Shanks, A finite formula for the Bernoulli numbers, Amer. Math. Monthly, 59 (1952), 496. |
[46] | S. Shirai, K. Sato, Some identities involving Bernoulli and Stirling numbers, J. Number Theory, 90 (2001), 130–142. https://doi.org/10.1006/jnth.2001.2659 doi: 10.1006/jnth.2001.2659 |
[47] | K. R. Stromberg An introduction to classical real analysis, Belmont, California: Wadsworth, 1981. |
[48] | P. G. Todorov, Explicit formulas for the Bernoulli and Euler polynomials and numbers, Abh. Math. Semin. Univ. Hambg., 61 (1991), 175–180. https://doi.org/10.1007/BF02950761 doi: 10.1007/BF02950761 |
[49] | P. Vassilev, M. V. Missana, On one remarkable identity involving Bernoulli numbers, Notes Number Theory Discrete Math., 11 (2005), 22–24. |
[50] | J. Worpitzky, Studien üer die Bernoullischen und Eulerschen Zahlen, J. Reine Angew. Math., 94 (1883), 203–232. https://doi.org/10.1515/crll.1883.94.203 doi: 10.1515/crll.1883.94.203 |