Research article

A high-accuracy conservative numerical scheme for the generalized nonlinear Schrödinger equation with wave operator

  • Received: 26 June 2024 Revised: 08 August 2024 Accepted: 14 August 2024 Published: 23 September 2024
  • MSC : 65N06, 65N12

  • In this article, we establish a novel high-order energy-preserving numerical approximation scheme to study the initial and periodic boundary problem of the generalized nonlinear Schrödinger equation with wave operator, which is proposed by the finite difference method. The scheme is of fourth-order accuracy in space and second-order one in time. The conservation property of energy as well as a priori estimate are described. The convergence of the proposed scheme is discussed in detail by using the energy method. Some comparisons have been made between the proposed method and the others. Numerical examples are presented to illustrate the validity and accuracy of the method.

    Citation: Xintian Pan. A high-accuracy conservative numerical scheme for the generalized nonlinear Schrödinger equation with wave operator[J]. AIMS Mathematics, 2024, 9(10): 27388-27402. doi: 10.3934/math.20241330

    Related Papers:

  • In this article, we establish a novel high-order energy-preserving numerical approximation scheme to study the initial and periodic boundary problem of the generalized nonlinear Schrödinger equation with wave operator, which is proposed by the finite difference method. The scheme is of fourth-order accuracy in space and second-order one in time. The conservation property of energy as well as a priori estimate are described. The convergence of the proposed scheme is discussed in detail by using the energy method. Some comparisons have been made between the proposed method and the others. Numerical examples are presented to illustrate the validity and accuracy of the method.



    加载中


    [1] K. Matsunchi, Nonlinear interactions of counter-travelling waves, J. Phys. Soc. Jpn., 48 (1980), 1746–1754. https://doi.org/10.1143/JPSJ.48.1746 doi: 10.1143/JPSJ.48.1746
    [2] L. Bergé, T. Colin, A singular perturbation problem for an envelope equation in plasma physics, Physica D, 84 (1995), 437–459. https://doi.org/10.1016/0167-2789(94)00242-i doi: 10.1016/0167-2789(94)00242-i
    [3] M. Holzleitner, A. Kostenko, G. Teschl, Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions, Opusc. Math., 36 (2016), 769–786. https://doi.org/10.7494/OpMath.2016.36.6.769 doi: 10.7494/OpMath.2016.36.6.769
    [4] J. X. Xin, Modeling light bullets with the two-dimensional sine-Gordon equation, Physica D, 135 (2000), 345–368. https://doi.org/10.1016/s0167-2789(99)00128-1 doi: 10.1016/s0167-2789(99)00128-1
    [5] S. Machihara, K. Nakanishi, T. Ozawa, Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, Math. Ann., 322 (2002), 603–621. https://doi.org/10.1007/s002080200008 doi: 10.1007/s002080200008
    [6] T. Saanouni, Global well-posedness of some high-order focusing semilinear evolution equations with exponential nonlinearity, Adv. Nonlinear Anal., 7 (2017), 67–84. https://doi.org/10.1515/anona-2015-0108 doi: 10.1515/anona-2015-0108
    [7] A. Biswas, H. Triki, M. Labidi, Bright and dark solutions of Rosenau-Kawahara equation with power law nonlinearty, Phys. Wave Phen., 19 (2011), 24–29. https://doi.org/10.3103/S1541308X11010067 doi: 10.3103/S1541308X11010067
    [8] L. Wang, L. Kong, L. Zhang, W. Zhou, X. Zheng, Multi-symplectic preserving integrator for the Schrödinger equation with wave operator, Appl. Math. Model., 39 (2015), 6817–6829. https://doi.org/10.1016/j.apm.2015.01.068 doi: 10.1016/j.apm.2015.01.068
    [9] B. Guo, H. Liang, On the problem of numerical calculation for a class of the system of nonlinear Schrödinger equations with wave operator, (Chinese), Journal on Numerica Methods and Computer Applications, 4 (1983), 176–182. https://doi.org/10.12288/szjs.1983.3.176 doi: 10.12288/szjs.1983.3.176
    [10] L. Zhang, Q. Chang, A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator, Appl. Math. Comput., 145 (2003), 603–612. https://doi.org/10.1016/s0096-3003(02)00842-1 doi: 10.1016/s0096-3003(02)00842-1
    [11] T.-C. Wang, L.-M. Zhang, Analysis of some new conservative schemes for nonlinear Schrödinger equation with wave operator, Appl. Math. Comput., 182 (2006), 1780–1794. https://doi.org/10.1016/j.amc.2006.06.015 doi: 10.1016/j.amc.2006.06.015
    [12] X. Li, L. Zhang, S. Wang, A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator, Appl. Math. Comput., 219 (2012), 3187–3197. https://doi.org/10.1016/j.amc.2012.09.051 doi: 10.1016/j.amc.2012.09.051
    [13] M. Dehghan, A. Mohebbi, Z. Asgari, Fourth-order compact solution of the nonlinear Klein-Gordon equation, Numer. Algor., 52 (2009), 523–540. https://doi.org/10.1007/s11075-009-9296-x doi: 10.1007/s11075-009-9296-x
    [14] T. Wang, B. Guo, Unconditional convergence of two conservative compact difference schemes for nonlinear Schrödinger equation in one dimension, (Chinese), Scientia Sinica Mathematica, 41 (2011), 207–233. https://doi.org/10.1360/012010-846 doi: 10.1360/012010-846
    [15] X. Li, Y. Gong, L. Zhang, Two novel classes of linear high-order structure-preserving schemes for the generalized nonlinear Schrödinger equation, Appl. Math. Lett., 104 (2020), 106273. https://doi.org/10.1016/j.aml.2020.106273 doi: 10.1016/j.aml.2020.106273
    [16] T. Wang, Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schrödinger equation, J. Math. Anal. Appl., 412 (2014), 155–167. https://doi.org/10.1016/j.jmaa.2013.10.038 doi: 10.1016/j.jmaa.2013.10.038
    [17] X. Pan, L. Zhang, High-order linear compact conservative method for the nonlinear Schrodinger equation coupled with the nonlinear Klein-Gordon equation, Nonlinear Anal. Theor., 92 (2013), 108–118. https://doi.org/10.1016/j.na.2013.07.003 doi: 10.1016/j.na.2013.07.003
    [18] D. Li, W. Sun, Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations, J. Sci. Comput., 83 (2020), 65. https://doi.org/10.1007/s10915-020-01245-6 doi: 10.1007/s10915-020-01245-6
    [19] X. Hu, L. Zhang, Conservative compact difference schemes for the coupled nonlinear Schrödinger system, Numer. Method. Part. Differ. Equ., 30 (2014), 749–772. https://doi.org/10.1002/num.21826 doi: 10.1002/num.21826
    [20] A. Mohebbi, M. Dehghan, High-order solution of one-dimensional Sine-Gordon equation using compact finite difference and DIRKN methods, Math. Comput. Model., 51 (2010), 537–549. https://doi.org/10.1016/j.mcm.2009.11.015 doi: 10.1016/j.mcm.2009.11.015
    [21] A. Mohebbi, M. Dehghan, High-order compact solution of the one-dimensional heat and advection-diffusion equations, Appl. Math. Model., 34 (2010), 3071–3084. https://doi.org/10.1016/j.apm.2010.01.013 doi: 10.1016/j.apm.2010.01.013
    [22] M. Dehghan, A. Taleei, A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients, Comput. Phys. Commun., 181 (2010), 43–51. https://doi.org/10.1016/j.cpc.2009.08.015 doi: 10.1016/j.cpc.2009.08.015
    [23] A. Mohebbi, M. Abbaszadeh, M. Dehghan, Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives, Comput. Method. Appl. Mech. Eng., 264 (2013), 163–177. https://doi.org/10.1016/j.cma.2013.05.012 doi: 10.1016/j.cma.2013.05.012
    [24] T. Wang, L. Zhang, Y. Jiang, Convergence of an efficient and compact finite difference scheme for the Klein-Gordon-Zakharov equation, Appl. Math. Comput., 221 (2013), 433–443. https://doi.org/10.1016/j.amc.2013.06.059 doi: 10.1016/j.amc.2013.06.059
    [25] T. Wang, J. Wang, B. Guo, Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation, J. Comput. Phys., 404 (2020), 109116. https://doi.org/10.1016/j.jcp.2019.109116 doi: 10.1016/j.jcp.2019.109116
    [26] D. Li, X. Li, Relaxation exponential Rosenbrock-type methods for oscillatory Hamiltonian systems, SIAM J. Sci. Comput., 45 (2023), A2886–A2911. https://doi.org/10.1137/22M1511345 doi: 10.1137/22M1511345
    [27] D. Li, X. Li, Z. Zhang, Linearly implicit and high-order energy-preserving relaxation schemes for highly oscillatory Hamiltonian systems, J. Comput. Phys., 477 (2023), 111925. https://doi.org/10.1016/j.jcp.2023.111925 doi: 10.1016/j.jcp.2023.111925
    [28] D. Li, X. Li, Z. Zhang, Implicit-explicit relaxation Runge-Kutta methods: construction, analysis and applications to PDEs, Math. Comp., 92 (2023), 117–146. https://doi.org/10.1090/mcom/3766 doi: 10.1090/mcom/3766
    [29] A. Ghiloufi, M. Rahmeni, K. Omrani, Convergence of two conservative high-order accurate difference schemes for the generalized Rosenau-Kawahara-RLW equation, Eng. Comput., 36 (2020), 617–632. https://doi.org/10.1007/s00366-019-00719-y doi: 10.1007/s00366-019-00719-y
    [30] K. Zheng, J. Hu, High-order conservative Crank-Nicolson scheme for regularized long wave equation, Adv. Differ. Equ., 2013 (2013), 287. https://doi.org/10.1186/1687-1847-2013-287 doi: 10.1186/1687-1847-2013-287
    [31] A. Samarskii, V. Andreev, Difference methods for elliptic equations, (Chinese), Beijing: Science Press, 1984.
    [32] Y. Zhou, Application of discrete functional analysis to the finite difference method, Beijing: International Academic Publishers, 1990.
    [33] J. Wang, Multisymplectic Fourier pseudospectral method for the nonlinear Schrödinger equations with wave operator, J. Comp. Math., 25 (2007), 31–48.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(393) PDF downloads(41) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog