Research article Special Issues

The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method

  • Received: 25 January 2024 Revised: 07 May 2024 Accepted: 20 May 2024 Published: 30 August 2024
  • MSC : 35C05, 35R11, 65R10

  • The time-fractional partial differential equations were solved by the fractional natural transform decomposition method. Fractional derivatives are Caputo sense. The Fornberg-Whitham equation is a generalization of the Korteweg-de Vries (KdV) equation, which describes the propagation of long waves in shallow water. It includes higher-order dispersion terms, making it applicable to a wider range of dispersive media the fractional natural transform decomposition method (FNTDM) was also used to examine applications, and the solutions obtained by this method have been compared to those obtained by the variational iteration method, fractional variational iteration method, and homotopy perturbation method. In addition, the MAPLE package drew graphs of the solutions of nonlinear time-fractional partial differential equations, taking into account physics. The method described in this study exhibited a notable degree of computational precision and straightforwardness when used to the analysis and resolution of intricate phenomena pertaining to fractional nonlinear partial differential equations within the domains of science and technology.

    Citation: Aslı Alkan, Halil Anaç. The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method[J]. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237

    Related Papers:

  • The time-fractional partial differential equations were solved by the fractional natural transform decomposition method. Fractional derivatives are Caputo sense. The Fornberg-Whitham equation is a generalization of the Korteweg-de Vries (KdV) equation, which describes the propagation of long waves in shallow water. It includes higher-order dispersion terms, making it applicable to a wider range of dispersive media the fractional natural transform decomposition method (FNTDM) was also used to examine applications, and the solutions obtained by this method have been compared to those obtained by the variational iteration method, fractional variational iteration method, and homotopy perturbation method. In addition, the MAPLE package drew graphs of the solutions of nonlinear time-fractional partial differential equations, taking into account physics. The method described in this study exhibited a notable degree of computational precision and straightforwardness when used to the analysis and resolution of intricate phenomena pertaining to fractional nonlinear partial differential equations within the domains of science and technology.



    加载中


    [1] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [3] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [4] K. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974.
    [5] I. Podlubny, Fractional differential equations, Elsevier, 1998.
    [6] R. Abu-Gdairi, M. Al-Smadi, G. Gumah, An expansion iterative technique for handling fractional differential equations using fractional power series scheme, J. Math. Stat., 11 (2015), 29.
    [7] D. Baleanu, A. K. Golmankhaneh, A. K. Golmankhaneh, M. C. Baleanu, Fractional electromagnetic equations using fractional forms, Int. J. Theor. Phys., 48 (2009), 3114–3123. https://doi.org/10.1007/s10773-009-0109-8 doi: 10.1007/s10773-009-0109-8
    [8] D. Baleanu, A. Jajarmi, M. Hajipour, On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernel, Nonlinear Dyn., 94 (2018), 397–414. https://doi.org/10.1007/s11071-018-4367-y doi: 10.1007/s11071-018-4367-y
    [9] D. Baleanu, J. H. Asad, A. Jajarmi, New aspects of the motion of a particle in a circular cavity, In: Proceedings of the Romanian Academy, 19 (2018), 361–367.
    [10] D. Baleanu, A. Jajarmi, E. Bonyah, M. Hajipour, New aspects of poor nutrition in the life cycle within the fractional calculus, Adv. Differ. Equ., 2018 (2018), 1–14. https://doi.org/10.1186/s13662-018-1684-x doi: 10.1186/s13662-018-1684-x
    [11] A. Jajarmi, D. Baleanu, Suboptimal control of fractional-order dynamic systems with delay argument, J. Vib. Control, 24 (2018), 2430–2446. https://doi.org/10.1177/1077546316687936 doi: 10.1177/1077546316687936
    [12] A. Jajarmi, D. Baleanu, A new fractional analysis on the interaction of HIV with CD4+ T-cells, Chaos Solitons Fract., 113 (2018), 221–229. https://doi.org/10.1016/j.chaos.2018.06.009 doi: 10.1016/j.chaos.2018.06.009
    [13] M. Klimek, Fractional sequential mechanics–models with symmetric fractional derivative, Czech. J. Phys., 51 (2001), 1348–1354. https://doi.org/10.1023/A: 1013378221617
    [14] N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 3135. https://doi.org/10.1103/PhysRevE.62.3135 doi: 10.1103/PhysRevE.62.3135
    [15] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, Singapore: World Scientific, 2010.
    [16] A. Secer, S. Altun, A new operational matrix of fractional derivatives to solve systems of fractional differential equations via Legendre wavelets, Mathematics, 6 (2018), 1–16. https://doi.org/10.3390/math6110238 doi: 10.3390/math6110238
    [17] S. M. El-Sayed, D. Kaya, Exact and numerical traveling wave solutions of Whitham-Broer-Kaup equations, Appl. Math. Comput., 167 (2005), 1339–1349. https://doi.org/10.1016/j.amc.2004.08.012 doi: 10.1016/j.amc.2004.08.012
    [18] A. M. Wazwaz, A reliable modification of Adomian decomposition method, Appl. Math. Comput., 102 (1999), 77–86. https://doi.org/10.1016/S0096-3003(98)10024-3 doi: 10.1016/S0096-3003(98)10024-3
    [19] J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3
    [20] J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73–79. https://doi.org/10.1016/S0096-3003(01)00312-5 doi: 10.1016/S0096-3003(01)00312-5
    [21] J. H. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350 (2006), 87–88. https://doi.org/10.1016/j.physleta.2005.10.005 doi: 10.1016/j.physleta.2005.10.005
    [22] Ş. Yüzbaşı, A numerical method for solving second-order linear partial differential equations under Dirichlet, Neumann and Robin boundary conditions, Int. J. Comput. Methods., 14 (2017), 1750015. https://doi.org/10.1142/S0219876217500153 doi: 10.1142/S0219876217500153
    [23] Ş. Yüzbaşı, A collocation approach for solving two-dimensional second-order linear hyperbolic equations, Appl. Math. Comput., 338 (2018), 101–114. https://doi.org/10.1016/j.amc.2018.05.053 doi: 10.1016/j.amc.2018.05.053
    [24] Ş. Yüzbaşı, G. Yıldırım, A collocation method to solve the parabolic-type partial integro-differential equations via Pell-Lucas polynomials, Appl. Math. Comput., 421 (2022), 126956. https://doi.org/10.1016/j.amc.2022.126956 doi: 10.1016/j.amc.2022.126956
    [25] M. Merdan, H. Anac, T. Kesemen, The new Sumudu transform iterative method for studying the random component time-fractional Klein-Gordon equation, Sigma, 10 (2019), 343–354.
    [26] K. Wang, S. Liu, A new Sumudu transform iterative method for time-fractional Cauchy reaction-diffusion equation, SpringerPlus, 5 (2016), 1–20. https://doi.org/10.1186/s40064-016-2426-8 doi: 10.1186/s40064-016-2426-8
    [27] F. Ayaz, Applications of differential transform method to differential-algebraic equations, Appl. Math. Comput., 152 (2004), 649–657. https://doi.org/10.1016/S0096-3003(03)00581-2 doi: 10.1016/S0096-3003(03)00581-2
    [28] F. Kangalgil, F. Ayaz, Solitary wave solutions for the KdV and mKdV equations by differential transform method, Chaos Solitons Fract., 41 (2009), 464–472. https://doi.org/10.1016/j.chaos.2008.02.009 doi: 10.1016/j.chaos.2008.02.009
    [29] M. Merdan, A. Gökdoğan, A. Yıldırım, S. T. Mohyud-Din, Numerical simulation of fractional Fornberg-Whitham equation by differential transformation method, Abstr. Appl. Anal., 2012 (2012), 965367. https://doi.org/10.1155/2012/965367 doi: 10.1155/2012/965367
    [30] J. H. He, Variational iteration method–a kind of non-linear analytical technique: some examples, Int. J. Non-Linear. Mech., 34 (1999), 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1 doi: 10.1016/S0020-7462(98)00048-1
    [31] G. W. Leibniz, Letter from Hanover, Germany to G.F.A. L'Hospital, September 30, 1695, In: Mathematische Schriften 1849, reprinted 1962,301–302.
    [32] P. K. Gupta, M. Singh, Homotopy perturbation method for fractional Fornberg-Whitham equation, Comput. Math. Appl., 61 (2011), 250–254. https://doi.org/10.1016/j.camwa.2010.10.045 doi: 10.1016/j.camwa.2010.10.045
    [33] S. Momani, Z. Odibat, A. Alawneh, Variational iteration method for solving the space‐ and time‐fractional KdV equation, Numer. Methods Partial Differ. Equ., 24 (2008), 262–271. https://doi.org/10.1002/num.20247 doi: 10.1002/num.20247
    [34] M. Merdan, On the solutions of nonlinear fractional Klein-Gordon equation with modified Riemann-Liouville derivative, Appl. Math. Comput., 242 (2014), 877–888. https://doi.org/10.1016/j.amc.2014.06.013 doi: 10.1016/j.amc.2014.06.013
    [35] Z. H. Khan, W. A. Khan, N-transform properties and applications, NUST J. Eng. Sci., 1 (2008), 127–133.
    [36] F. B. M. Belgacem, R. Silambarasan, Maxwell's equations solutions by means of the natural transform, Math. Eng. Sci. Aerosp, 3 (2012), 313–323.
    [37] F. B. M. Belgacem, R. Silambarasan, Theory of natural transform, Math. Eng. Sci. Aerosp, 3 (2012), 99–124.
    [38] M. S. Rawashdeh, S. Maitama, Solving coupled system of nonlinear PDE's using the natural decomposition method, Int. J. Pure Appl. Math., 92 (2014), 757–776. https://doi.org/10.12732/ijpam.v92i5.10 doi: 10.12732/ijpam.v92i5.10
    [39] M. S. Rawashdeh, S. Maitama, Solving nonlinear ordinary differential equations using the NDM, J. Appl. Anal. Comput., 5 (2015), 77–88. https://doi.org/10.11948/2015007 doi: 10.11948/2015007
    [40] M. S. Rawashdeh, S. Maitama, Solving PDEs using the natural decomposition method, Nonlinear Stud., 23 (2016), 63–72.
    [41] M. Rawashdeh, S. Maitama, Finding exact solutions of nonlinear PDEs using the natural decomposition method, Math. Methods Appl. Sci., 40 (2017), 223–236. https://doi.org/10.1002/mma.3984 doi: 10.1002/mma.3984
    [42] H. M. Baskonus, H. Bulut, Y. Pandir, The natural transform decomposition method for linear and nonlinear partial differential equations, Math. Eng. Sci. Aerosp, 5 (2014), 111–126.
    [43] M. S. Rawashdeh, The fractional natural decomposition method: theories and applications, Math. Methods Appl. Sci., 40 (2017), 2362–2376. https://doi.org/10.1002/mma.4144 doi: 10.1002/mma.4144
    [44] W. Gao, P. Veeresha, D. G. Prakasha, H. M. Baskonus, New numerical simulation for fractional Benney-Lin equation arising in falling film problems using two novel techniques, Numer. Methods Partial Differ. Equ., 37 (2021), 210–243. https://doi.org/10.1002/num.22526 doi: 10.1002/num.22526
    [45] G. M. Mittag-Leffler, Sur la nouvelle function Eα(x), C. R. Acad. Sci. Paris, 137 (1903), 554–558.
    [46] K. Shah, H. Khalil, R. A. Khan, Analytical solutions of fractional order diffusion equations by natural transform method, Iran. J. Sci. Technol. Trans. A Sci., 42 (2018), 1479–1490. https://doi.org/10.1007/s40995-016-0136-2 doi: 10.1007/s40995-016-0136-2
    [47] A. K. Golmankhaneh, A. K. Golmankhaneh, D. Baleanu, On nonlinear fractional Klein-Gordon equation, Signal Process., 91 (2011), 446–451. https://doi.org/10.1016/j.sigpro.2010.04.016 doi: 10.1016/j.sigpro.2010.04.016
    [48] J. Liouville, Memoire sur quelques questions de geometries et de mecanique, et sur un nouveau genre de calcul pour resoundre ces questions, J. École. Polytech., 13 (1832), 1–69.
    [49] B. Ross, A brief history and exposition of the fundamental theory of fractional calculus. In: Fractional calculus and its applications, Berlin, Heidelberg: Springer, 1975, 1–36. https://doi.org/10.1007/BFb0067096
    [50] R. Hilfer, Y. Luchko, Desiderata for fractional derivatives and integrals, Mathematics, 7 (2019), 1–5. https://doi.org/10.3390/math7020149 doi: 10.3390/math7020149
    [51] D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics, 7 (2019), 1–10. https://doi.org/10.3390/math7090830 doi: 10.3390/math7090830
    [52] M. D. Ortigueira, J. A. T. Machado, What is a fractional derivative? J. Comput. Phys., 293 (2015), 4–13. https://doi.org/10.1016/j.jcp.2014.07.019 doi: 10.1016/j.jcp.2014.07.019
    [53] M. Caputo, M. Fabrizio, On the notion of fractional derivative and applications to the hysteresis phenomena, Meccanica, 52 (2017), 3043–3052. https://doi.org//10.1007/s11012-017-0652-y doi: 10.1007/s11012-017-0652-y
    [54] D. Z. Zhao, M. K. Luo, Representations of acting processes and memory effects: general fractional derivative and its application to theory of heat conduction with finite wave speeds, Appl. Math. Comput., 346 (2019), 531–544. https://doi.org/10.1016/j.amc.2018.10.037 doi: 10.1016/j.amc.2018.10.037
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(720) PDF downloads(53) Cited by(1)

Article outline

Figures and Tables

Figures(15)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog