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Abstract: The time-fractional partial differential equations were solved by the fractional natural 

transform decomposition method. Fractional derivatives are Caputo sense. The Fornberg-Whitham 

equation is a generalization of the Korteweg-de Vries (KdV) equation, which describes the 

propagation of long waves in shallow water. It includes higher-order dispersion terms, making it 

applicable to a wider range of dispersive media the fractional natural transform decomposition 

method (FNTDM) was also used to examine applications, and the solutions obtained by this 

method have been compared to those obtained by the variational iteration method, fractional 

variational iteration method, and homotopy perturbation method. In addition, the MAPLE package 

drew graphs of the solutions of nonlinear time-fractional partial differential equations, taking into 

account physics. The method described in this study exhibited a notable degree of computational 

precision and straightforwardness when used to the analysis and resolution of intricate phenomena 

pertaining to fractional nonlinear partial differential equations within the domains of science and 

technology. 
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1. Introduction 

The subject matter of fractional calculus has been thoroughly examined and delineated by a 

multitude of eminent scholars. The formulation of unique conceptualizations of fractional calculus by 

the authors has subsequently established the fundamental principles of fractional analysis within the 

area. Fractional partial differential equations (FPDEs) are commonly utilized in the field of nonlinear 

model development and analysis of dynamical systems. The application of fractional calculus has been 

utilized in the evaluation and exploration of various fields, including chaos theory, financial models, 

disordered settings, and optics. Nonlinear difficulties in nature are primarily determined by solving 

fractional differential equations. Due to the inherent difficulty connected with obtaining analytical 

solutions for fractional differential equations that reflect nonlinear events, a wide array of analytical 

and numerical techniques are utilized [1–5]. 

FPDEs are utilized to describe a wide variety of phenomena in numerous scientific disciplines [6]. 

In [7], the finite difference methods, the Galerkin finite element methods, and the spectral methods for 

fractional partial differential equations (FPDEs), which are divided into the time-fractional, space-

fractional, and space-time-fractional partial differential equations (PDEs) have been utilized to solve. 

The generalized physics laws involving fractional derivatives have been presented the new models and 

conceptions that can be used in complex systems having memory effects [8]. The existence and 

uniqueness of the solution of nonlinear fractional differential equations with Mittag-Leffler 

nonsingular kernel have been given [9]. The time-fractional Burgers Equation has been solved by using 

the improving homotopy analysis method [10]. The poor nutrition in the life cycle of humans has been 

examined in the fractional sense [11]. In [12], an efficient linear programming formulation has been 

proposed for a class of fractional-order optimal control problems with delay argument. Many 

researchers have examined the mathematical modeling of biological systems in the fractional sense [13]. 

The symmetric fractional derivative has been introduceds introduced and its properties are examined [14]. 

A path integral approach to quantum physics has been improved. Fractional path integrals over the 

paths of the Lévy flights have been described [15]. General information about the solutions of 

fractional mathematical models has been given [16]. Recent attention has been drawn to FPDEs as a 

result of their wide range of applications in the applied sciences, including control theory, image 

processing, signal processing and system identification, and fluid mechanics [16,17]. Since the most of 

nonlinear FPDEs cannot be solved analytically, a variety of numerical approaches have been created. There 

is the Adomian decomposition technique [18], Homotopy perturbation technique [19–21], collocation 

technique [22–24], Sumudu transform technique [25,26], differential transform technique [27–29], and 

variational iteration technique [30]. 

Fractional differential equations were most often made up of so-called Caputo-like operators with 

different kinds of kernels. In this case, we think we need to find the answer to the following question: 

Why do we have to use the same initial conditions as in the classical case for a fractional operator that 

doesn't yet have a very clear physical meaning? We think that the ideas that Liouville came up with in 1832 

about the fractional calculus are still relevant today. For example, we need new types of fractional 

operators to solve real-world problems that can't be solved with other mathematical tools. We don't 

think that the answer to the question, "What is the most general fractional operator that can solve all 

kinds of complicated dynamical systems with different memory effects?" has been found yet. It's a big 

and interesting question that hasn't been answered yet. We think that the development of numerical 

methods for fractional operators is very important to the development of fractional calculus. This area 
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needs a new point of view that gets around the problems caused by the memory effect [31]. 

In a dispersive medium, the evolution of a wave is described by the Fornberg-Whitham equation, 

which is a partial differential equation (PDE). Bengt Fornberg and Gerald B. Whitham introduced this 

concept in 1978. The Fornberg-Whitham equation is given by [32] 

𝐷𝑡𝑢(𝑥, 𝑡) − 𝑐0𝐷𝑥𝑥𝑡𝑢(𝑥, 𝑡) + 𝑐1𝐷𝑥𝑢(𝑥, 𝑡), 
(1) 

= 𝑐2𝑢(𝑥, 𝑡)𝐷𝑥𝑥𝑥𝑢(𝑥, 𝑡) − 𝑐3𝑢(𝑥, 𝑡)𝐷𝑥𝑢(𝑥, 𝑡) + 3𝐷𝑥𝑢(𝑥, 𝑡)𝐷𝑥𝑥𝑢(𝑥, 𝑡), 

where 𝑢(𝑥, 𝑡) is the fluid velocity, 𝑥 is the spatial coordinate, 𝑡 is time, 𝑥 is space, and 𝑐0, 𝑐1, 𝑐2, 

and 𝑐3  are constants related to the dispersion properties of the medium. The Fornberg-Whitham 

equation represents an extension of the Korteweg-de Vries (KdV) equation, which provides a 

conceptual framework for understanding the dynamics of long waves in shallow water. The model 

incorporates dispersion terms of higher order, hence expanding its applicability to a broader spectrum 

of dispersive media [32]. 

The KdV equation is a highly significant PDE that provides a comprehensive description of the 

dynamics of specific categories of nonlinear waves. The concept of propagation of long, weakly nonlinear, 

and dispersive water waves in a canal was initially formulated by Korteweg and Vries in 1895. The KdV 

equation is given by [33] 

𝐷𝑡𝑢(𝑥, 𝑡) + 𝑐𝐷𝑥𝑢(𝑥, 𝑡) + 𝑐1𝑢(𝑥, 𝑡)𝐷𝑥𝑢(𝑥, 𝑡) + 𝑐2𝐷𝑥𝑥𝑥𝑢(𝑥, 𝑡) = 0, (2) 

where 𝑢(𝑥, 𝑡) is the dependent variable representing the wave amplitude, 𝑥 is the spatial coordinate, 

𝑡 is time, 𝑥 is space, 𝑐 is the phase speed of the wave, and 𝑐1 and 𝑐2 are constants related to the 

properties of the medium [33]. 

The KdV equation is a nonlinear dynamic equation that exhibits dispersiveness and integrability. 

This statement elucidates the phenomenon of waves that retain their form during propagation, 

demonstrating a harmonious interplay between nonlinear influences that induce wave distortion and 

dispersive influences that reinstate the wave's original shape. The KdV equation is renowned for its 

soliton solutions, which are singular wave solutions that arise from specific initial conditions and 

propagate without undergoing any transformative changes in their structure. Solitons are intrinsically 

stable and nonlinear entities that manifest in diverse physical systems, encompassing phenomena such 

as water waves, plasma physics, and nonlinear optics. In the study of solitons and nonlinear wave 

processes, the KdV equation is a fundamental model [33]. 

The present study focuses on the Klein-Gordon equation (KGE), which is a fundamental non-

linear evolution equation that emerges within the framework of relativistic quantum mechanics. The 

nonrelativistic wave equation in quantum physics was established by Erwin Schrodinger and then 

examined in detail by renowned scientists O. Klein and W. Gordon in 1926. The quantum field 

equation (KGE) exhibits a wide range of applications in both classical field theory and quantum field 

theory. Furthermore, it has been widely employed in other domains of physical phenomena, including 

solid-state physics, dispersive wave phenomena, nonlinear optics, elementary particle behavior, and 

various classes of soliton solutions [34]. 

The Klein-Gordon equation is given by [34] 

𝐷𝑡𝑢(𝑥, 𝑡) = 𝐷𝑥𝑥𝑢(𝑥, 𝑡) + 𝑎𝑢(𝑥, 𝑡) + 𝑏𝑢
2(𝑥, 𝑡) + 𝑐𝑢3(𝑥, 𝑡), (3) 

where 𝑥 is the spatial coordinate, 𝑡 is time, 𝑥 is space, and 𝑎, 𝑏, and 𝑐 are real constants. 

In this paper, we consider the time-fractional Fornberg-Whitham equation (TFFWE) as follows: 
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𝐷𝑡
𝛼𝑢(𝑥, 𝑡) − 𝑐0𝐷𝑥𝑥𝑡𝑢(𝑥, 𝑡) + 𝑐1𝐷𝑥𝑢(𝑥, 𝑡) 

(4) 
= 𝑐2𝑢(𝑥, 𝑡)𝐷𝑥𝑥𝑥𝑢(𝑥, 𝑡) − 𝑐3𝑢(𝑥, 𝑡)𝐷𝑥𝑢(𝑥, 𝑡) + 3𝐷𝑥𝑢(𝑥, 𝑡)𝐷𝑥𝑥𝑢(𝑥, 𝑡). 

Also, we examine the time-fractional KdV equation as follows: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝑐𝐷𝑥𝑢(𝑥, 𝑡) + 𝑐1𝑢(𝑥, 𝑡)𝐷𝑥𝑢(𝑥, 𝑡) + 𝑐2𝐷𝑥𝑥𝑥𝑢(𝑥, 𝑡) = 0. 

(5) 

Besides, we analyze the time-fractional Klein-Gordon equation as follows: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = 𝐷𝑥𝑥𝑢(𝑥, 𝑡) + 𝑎𝑢(𝑥, 𝑡) + 𝑏𝑢

2(𝑥, 𝑡) + 𝑐𝑢3(𝑥, 𝑡). 
(6) 

The natural transform was used to solve the linear ordinary differential equations [35]. The natural 

transform was applied to Maxwell's equations by Silambarasn and Belgacem [36]. The Fourier integral 

is also used to derive the natural transform [37]. Rawashdeh and Maitama [38] first improved the 

natural decomposition method to solve nonlinear partial differential equations (NPDEs) in a variety of 

scientific fields [39–42]. In addition, the natural transform decomposition method (NTDM) has been 

used to solve NPDEs [43]. It has been proposed to use the fractional natural decomposition method 

(FNDM) [44]. Additionally, Rawashdeh proved three major theorems about FNDM [44]. Gao et al. 

used two current methods to obtain the numerical solution for the fractional Benney-Lin equation [45]. 

Momani et al. used the variational iteration technique to obtain numerical solutions to time-fractional 

KdV equations [33]. The fractional natural decomposition method (FNTDM) is utilized to examine 

the fractional KdV equation in [33]. As a result, the obtained numerical solutions are superior to their 

numerical solutions in [33]. 

The utilization of the natural transform (NT) in fractional calculus is a highly effective technique 

that presents numerous benefits in comparison to alternative integral transforms, such as the Laplace 

and Fourier transforms. Several advantages can be identified. The NT is a comprehensive extension of 

other widely recognized integral transforms, such as the Laplace and Fourier transforms. It possesses 

the capability to process a broader spectrum of functions and is especially well-suited for addressing 

fractional-order differential equations. The NT inherently includes fractional-order operators, which 

are prevalent in numerous real-world phenomena. This characteristic renders it a more appropriate 

instrument for representing intricate systems characterized by dynamics of non-integer order. The 

utilization of the NT has the potential to streamline the mathematical representation of an issue, hence 

facilitating its analysis and resolution in some instances. This holds particularly true for problems that 

involve differential equations of fractional order. The NT possesses a distinct physical interpretation 

due to its utilization of a fractional-order differential operator, hence facilitating comprehension of the 

fundamental dynamics inherent in a given system. The NT has exhibited a wide range of applications 

across diverse domains such as physics, engineering, biology, and finance, hence showcasing its 

adaptability and efficacy in addressing practical challenges. In general, the NT presents a distinct array 

of benefits that render it a desirable instrument in the realm of fractional calculus and its associated 

domains [46]. 

This paper introduces numerical approximation tools that have been specifically developed for 

the equations being examined. This research aims to solve the nonlinear time-fractional Fornberg-

Whitham equation, nonlinear time-fractional Klein-Gordon equation, and nonlinear time-fractional 

KdV equation by using the FNTDM. These solutions represent the first application of their kind. This 

study aims to get innovative numerical solutions for the aforementioned equations by employing the 

recently developed hybrid approach. This study identifies some solutions that have not been previously 
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examined in the current literature and provides a complete depiction of their graphical features. 

The rest of the paper is structured as follows: Preliminaries have been introduced in Section 2. 

Fractional natural transform decomposition method are explained in Section 3. Applications have been 

given in Section 4. In Section 5, a result and discussion is introduced. Also, the conclusion is stated in 

Section 6. 

2. Materials and methods 

The section contains the general information about fractional calculus. 

Definition 1.1. [47] The Mittag-Leffler function 𝐸𝑎 is given by 

𝐸𝑎(𝑥) = ∑
𝑥𝑎

Г(𝑛𝑎 + 1)

∞

𝑛=0

. (7) 

Definition 1.2. [1] The Riemann-Liouville fractional integral operator of order 𝑎 ≥ 0, of a function 

𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1 is as Eq (2). 

𝐼𝑎𝑓(𝑥) =

{
 

 1

Г(𝑎)
∫(𝑥 − 𝑡)𝑎−1𝑓(𝑡)𝑑𝑡

𝑥

0

, 𝑎 > 0, 𝑥 > 0,

𝐼0𝑓(𝑥) = 𝑓(𝑥),                𝑎 = 0,

 (8) 

where Г(. ) is the Gamma function. 

The following are two required properties of the operator 𝐼𝑎 [27]: 

For 𝑓 ∈ 𝐶𝜇 , 𝜇, 𝛾 ≥ −1, 𝛼, 𝛽 ≥ 0: 

(1) 𝐼𝑎𝐼𝛽𝑓(𝑥) = 𝐼𝛽𝐼𝑎𝑓(𝑥) = 𝐼𝑎+𝛽𝑓(𝑥), 

(2) 𝐼𝑎𝑥𝛾 =
Г(𝛾+1)

Г(𝛼+𝛾+1)
𝑥𝛼+𝛾 . 

Definition 1.3. [1,6] The Caputo fractional derivative of a function 𝑓(𝑥) is given by Eq (3). 

𝐷𝑎𝑓(𝑥) = 𝐼𝑎−𝑛𝐷𝑛𝑓(𝑥) =
1

Г(𝑛 − 𝑎)
∫(𝑥 − 𝑡)𝑛−𝑎−1𝑓(𝑛)(𝑡)𝑑𝑡

𝑥

0

, (9) 

where 𝑛 − 1 < 𝑎 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑥 > 0, 𝑓 ∈ 𝐶−1
𝑛 . 

The operator 𝐷𝑎 must have two essential properties [27]: 

(1) 𝐷𝑎𝐼𝑎𝑓(𝑥) = 𝑓(𝑥), 

(2) 𝐼𝑎𝐷𝑎𝑓(𝑥) = 𝑓(𝑥) − ∑ 𝑓(𝑘)(0+)
𝑥𝑘

𝑘!

𝑛−1
𝑘=0 , 𝑥 > 0. 

Definition 1.4. [48] The natural transform of the function 𝑓(𝑡) is given as 

𝑁+[𝑓(𝑡)] = 𝑄(𝑠, 𝑢) =
1

𝑢
∫ 𝑓(𝑡)𝑒−

𝑠𝑡
𝑢𝑑𝑡

∞

0

, 𝑠, 𝑢 > 0, (10) 
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where 𝑠 and 𝑢 are the transform variables. 

Definition 1.5. [48] The inverse natural transform of the function is described via 

𝑁−[𝑄(𝑠, 𝑢)] = 𝑓(𝑡) =
1

2𝜋𝑖
∫ 𝑒

𝑠𝑡
𝑢

∞

−∞

𝑄(𝑠, 𝑢)𝑑𝑠, 𝑠, 𝑢 > 0, (11) 

where 𝑠 and 𝑢 are the natural transform variables. 

Definition 1.6. [48] If 𝑛 is any positive integer, where 𝑛 − 1 ≤ 𝛼 < 𝑛 and 𝑄(𝑠, 𝑢) is the natural 

transform of the function 𝑓(𝑡) , then the natural transform 𝑄𝛼
𝑐(𝑠, 𝑢)  of the Caputo fractional 

derivative (CFD) of the function 𝑓(𝑡) of order 𝛼 showed by 𝐷𝛼𝑓(𝑡) is defined by 

ℕ+[𝐷𝛼𝑓(𝑡) ] = 𝑄𝛼
𝑐(𝑠, 𝑢) =

𝑠𝛼

𝑢𝛼
𝑄(𝑠, 𝑢) − ∑

𝑠𝛼−(𝑚+1)

𝑢𝛼−𝑚
(𝐷𝑚𝑓(𝑡))

𝑡=0

𝑛−1

𝑚=0

. (12) 

Now consider the Table 1, which includes the natural fractional integral transform. 

Table 1. [48] The natural fractional integral transforms of some basic functions. 

𝒇(𝒕) ℕ+[𝑱𝜶𝒇(𝒕)] 

1 𝑢𝛼

𝑠𝛼+1
 

𝑡 𝑢𝛼+1

𝑠𝛼+2
 

𝑡𝑛−1

(𝑛−1)!
, n=1,2,… 

𝑢𝛼+𝑛−1

𝑠𝛼+𝑛
 

𝑡𝑛−1

Г(𝑛)
,n> 0 

𝑢𝛼+𝑛−1

𝑠𝛼+𝑛
 

𝑒𝑎𝑡 𝑢𝛼

𝑠𝛼(𝑠 − 𝑎𝑢)
 

3. Fractional natural transform decomposition method 

Consider the nonlinear time-fractional partial differential equation (NTFPDE) with the initial 

condition 

𝐷𝑡
𝑎𝑢(𝑥, 𝑡) + 𝐿𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡),

𝑛 − 1 < 𝑎 ≤ 𝑛, 𝑛 ∈ ℕ,
𝑢(𝑥, 0) = ℎ(𝑥),

 (13) 

where 𝐷𝑡
𝑎 =

𝜕𝑎

𝜕𝑡𝑎
  is the CFD operator, 𝑔(𝑥, 𝑡)  is the source term, 𝐿  is linear operator and 𝑁  is 

nonlinear operator [27]. Applying natural transform to both sides of Eq (13), then Eq (14) is obtained as 

ℕ+[𝐷𝑡
𝑎𝑢(𝑥, 𝑡)] + ℕ+[𝐿𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)] = ℕ+[𝑔(𝑥, 𝑡)]. (14) 
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It is obtained as a result of the natural transform property [47] 

𝑠𝑎

𝑢𝑎
ℕ+[𝑢(𝑥, 𝑡)] −

𝑠𝑎−1

𝑢𝑎
𝑢(𝑥, 0) = ℕ+[𝑔(𝑥, 𝑡)] − ℕ+[𝐿𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)]. (15) 

Rearranging Eq (15), then Eq (10) has been found by 

ℕ+[𝑢(𝑥, 𝑡)] =
ℎ(𝑥)

𝑠
+
𝑢𝑎

𝑠𝑎
ℕ+[𝑔(𝑥, 𝑡)] −

𝑢𝑎

𝑠𝑎
ℕ+[𝐿𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)]. (16) 

The solution 𝑢(𝑥, 𝑡) is represented by the infinite series as in Eq (17). 

𝒖(𝒙, 𝒕) =∑𝒖𝒊(𝒙, 𝒕)

∞

𝒊=𝟎

, (17) 

and the nonlinear terms 𝑁𝑢(𝑥, 𝑡) are written by the infinite series of Adomian polynomials as 

𝑁𝑢(𝑥, 𝑡) =∑𝐴𝑖

∞

𝑖=0

, (18) 

where 

𝐴𝑖 =
1

𝑖!
[
𝑑𝑖

𝑑𝜆𝑖
[𝑁∑𝜆𝑖𝑣𝑖

∞

𝑖=0

]]

𝜆=0

, i = 0,1,2… (19) 

Substituting Eqs (18) and (19) into Eq (16), then Eq (20) is obtained as 

ℕ+ [∑𝑢(𝑥, 𝑡)

∞

𝑖=0

] =
ℎ(𝑥)

𝑠
+
𝑢𝑎

𝑠𝑎
ℕ+[𝑔(𝑥, 𝑡)] −

𝑢𝑎

𝑠𝑎
ℕ+ [𝐿∑𝑢𝑖(𝑥, 𝑡)

∞

𝑖=0

+∑𝐴𝑖

∞

𝑖=0

]. (20) 

If both sides of Eq (20) are compared, then Eq (21) is obtained as 

{
ℕ+[𝑢0(𝑥, 𝑡)] =

ℎ(𝑥)

𝑠
+
𝑢𝑎

𝑠𝑎
ℕ+[𝑔(𝑥, 𝑡)],

ℕ+[𝑢1(𝑥, 𝑡)] = −
𝑢𝑎

𝑠𝑎
ℕ+[𝐿𝑢0(𝑥, 𝑡) + 𝐴0].

 (21) 

The general iteration formula is acquired as 

ℕ+[𝑢𝑖+1(𝑥, 𝑡)] = −
𝑢𝑎

𝑠𝑎
ℕ+[𝐿𝑢𝑖(𝑥, 𝑡) + 𝐴𝑖], 𝑖 ≥ 1. (22) 

When the inverse NT (INT) is applied to Eqs (22), (17) and (18) are obtained as 

𝑢0(𝑥, 𝑡) = ℎ(𝑥) + ℕ
− [
𝑢𝑎

𝑠𝑎
ℕ+[𝑔(𝑥, 𝑡)]], (23) 
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𝑢𝑖+1(𝑥, 𝑡) = −ℕ
− [
𝑢𝑎

𝑠𝑎
ℕ+[𝐿𝑢𝑖(𝑥, 𝑡) + 𝐴𝑖]]. 

(24) 

Finally, the approximate solution 𝑢(𝑥, 𝑡) is acquired as 

𝑢(𝑥, 𝑡) =∑𝑢𝑖(𝑥, 𝑡)

∞

𝑖=0

. (25) 

Now, the FNTDM is used to obtain the numerical solutions to three equations that are already 

well-known. 

4. Convergence analysis 

Theorem 4.1. Let's assume that A is a Banach space. Then, the expansion result of 𝑢(𝑥, 𝑡) converges 

uncertainty; there becomes 0 < 𝜅 < 1, so that ‖𝑢𝑖(𝑥, 𝑡)‖ ≤ 𝜅‖𝑢𝑖−1(𝑥, 𝑡)‖, for ∀i ∈ Ν. 

Proof. Consider the subsequent succession 

𝐻𝑖(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ⋯+ 𝑢𝑖(𝑥, 𝑡). (26) 

It is essential to confirm that successions of 𝑖-th partial sums form Cauchy series in Banach space. 

In this regard, we consider the following: 

‖𝐻𝑖+1(𝑥, 𝑡) − 𝐻𝑖(𝑥, 𝑡)‖ ≤ ‖𝑢𝑖+1(𝑥, 𝑡)‖ ≤ 𝜅‖𝑢𝑖(𝑥, 𝑡)‖ ≤ 𝜅2‖𝑢𝑖−1(𝑥, 𝑡)‖ 

≤ ⋯ ≤ 𝜅𝑖+1‖𝑢0(𝑥, 𝑡)‖. 
(27) 

For every ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≤ 𝑗, it is obtained as 

‖𝐻𝑖(𝑥, 𝑡) − 𝐻𝑗(𝑥, 𝑡)‖ ≤ ‖𝐻𝑗+1(𝑥, 𝑡) − 𝐻𝑗(𝑥, 𝑡)‖ + ‖𝐻𝑗+2(𝑥, 𝑡) − 𝐻𝑗+1(𝑥, 𝑡)‖ 

+⋯+ ‖𝐻𝑖(𝑥, 𝑡) − 𝐻𝑖+1(𝑥, 𝑡)‖. 

(28) 

Using the triangle inequality, then the inequality (28) transforms into the inequality (29) 

‖𝐻𝑖(𝑥, 𝑡) − 𝐻𝑗(𝑥, 𝑡)‖ ≤ ‖𝐻𝑗+1(𝑥, 𝑡) − 𝐻𝑗(𝑥, 𝑡)‖ + ‖𝐻𝑗+2(𝑥, 𝑡) − 𝐻𝑗+1(𝑥, 𝑡)‖ 

+‖𝐻𝑗+2(𝑥, 𝑡) − 𝐻𝑗+1(𝑥, 𝑡)‖. 
(29) 

The inequality (29) can be represented as 

‖𝐻𝑖(𝑥, 𝑡) − 𝐻𝑗(𝑥, 𝑡)‖ ≤ 𝜅
𝑗+1‖𝑢0(𝑥, 𝑡)‖ + 𝜅

𝑗+2‖𝑢0(𝑥, 𝑡)‖ + ⋯+ 𝜅
𝑖‖𝑢0(𝑥, 𝑡)‖. (30) 

Simplifying the inequality (30), then we have 

‖𝐻𝑖(𝑥, 𝑡) − 𝐻𝑗(𝑥, 𝑡)‖ ≤ 𝜅
𝑗+1(1 + 𝜅 + 𝜅2 +⋯+ 𝜅𝑖−𝑗−1)‖𝑢0(𝑥, 𝑡)‖,  (31) 

where (
1−𝜅𝑖−𝑗

1−𝜅
) = 1 + 𝜅 + 𝜅2 +⋯+ 𝜅𝑖−𝑗−1. 

Thus, inequality (32) is obtained as 
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‖𝐻𝑖(𝑥, 𝑡) − 𝐻𝑗(𝑥, 𝑡)‖ ≤ 𝜅
𝑗+1 (

1−𝜅𝑖−𝑗

1−𝜅
) ‖𝑢0(𝑥, 𝑡)‖.     (32) 

Hence, it is acquired as 0 < 𝜅 < 1, and 1 − 𝜅𝑖−𝑗 ≤ 1. 

Using inequality (32), we have 

‖𝐻𝑖(𝑥, 𝑡) − 𝐻𝑗(𝑥, 𝑡)‖ ≤
𝜅𝑖+1

1−𝜅
‖𝑢0(𝑥, 𝑡)‖.      (33) 

Since 𝑢0(𝑥, 𝑡) is bounded, it is obtained as 

lim
𝑖,𝑗→∞

‖𝐻𝑖(𝑥, 𝑡) − 𝐻𝑗(𝑥, 𝑡)‖ = 0.       (34) 

Thus, {𝐻𝑖} is a Cauchy series in Banach space. Because of this, it is concluded that Eq (25) 

converges. 

5. Applications 

Now we obtain the novel numerical solutions for the time-fractional Fornberg-Whitham equation, 

the time-fractional Klein-Gordon equation, the time-fractional KdV equation using the FNTDM. 

Example 1. Examine the time-fractional Fornberg-Whitham equation [32] 

{

𝑢𝑡
𝛼(𝑥, 𝑡)− 𝑢𝑥𝑥𝑡(𝑥, 𝑡)+ 𝑢𝑥(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)𝑢𝑥𝑥𝑥(𝑥, 𝑡)− 𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡)+ 3𝑢𝑥(𝑥, 𝑡)𝑢𝑥𝑥(𝑥, 𝑡),

0 < 𝛼 ≤ 1,

𝑢(𝑥, 0) = 𝑒𝑥/2.
 

(35) 

Applying NT to Eq (35) and utilizing the differential property of NT, we have 

𝑠𝑎

𝑢𝑎
ℕ+[𝑢(𝑥, 𝑡)] −

𝑠𝑎−1

𝑢𝑎
𝑢(𝑥, 0) = ℕ+[𝑢𝑥𝑥𝑡(𝑥, 𝑡) − 𝑢𝑥(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)𝑢𝑥𝑥𝑥(𝑥, 𝑡) 

−𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡) + 3𝑢𝑥(𝑥, 𝑡)𝑢𝑥𝑥(𝑥, 𝑡)].   (36) 

Rearranging Eq (36), then it is obtained as 

ℕ+[𝑢(𝑥, 𝑡)] =
𝑒𝑥/2

s
+
𝑢𝑎

𝑠𝑎
ℕ+[𝑢𝑥𝑥𝑡(𝑥, 𝑡) − 𝑢𝑥(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)𝑢𝑥𝑥𝑥(𝑥, 𝑡) 

−𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡) + 3𝑢𝑥(𝑥, 𝑡)𝑢𝑥𝑥(𝑥, 𝑡)].      (37) 

When the INT is implemented to Eq (37), then it is obtained as 

𝑢(𝑥, 𝑡) = ℕ− [
𝑒
𝑥
2

s
] + ℕ−[

𝑢𝑎

𝑠𝑎
ℕ+[𝑢𝑥𝑥𝑡(𝑥, 𝑡) − 𝑢𝑥(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)𝑢𝑥𝑥𝑥(𝑥, 𝑡) 

−𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡) + 3𝑢𝑥(𝑥, 𝑡)𝑢𝑥𝑥(𝑥, 𝑡)]].        (38) 

Using Adomian decomposition method, then we have 

𝑢0(𝑥, 𝑡) = ℕ
− [

𝑒𝑥/2

s
] = 𝑒𝑥/2.       (39) 
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The general iteration formula is written as 

∑ 𝑢𝑖+1(𝑥, 𝑡)
∞
𝑖=0 = ℕ− [

𝑢𝑎

𝑠𝑎
ℕ+[∑ (𝑢𝑥𝑥𝑡)𝑖

∞
𝑖=0 − ∑ (𝑢𝑥)𝑖

∞
𝑖=0 + ∑ 𝐴𝑖

∞
𝑖=0 − ∑ 𝐵𝑖

∞
𝑖=0 +3∑ 𝐶𝑖

∞
𝑖=0 ]], (40) 

where 𝐴𝑖 , 𝐵𝑖 and 𝐶𝑖 are Adomian polynomials, 𝑖 = 0,1,2, … These are found as 

𝐴0(𝑢𝑢𝑥𝑥𝑥) = 𝑢0𝑢0𝑥𝑥𝑥, 
(41) 

𝐴1(𝑢𝑢𝑥𝑥𝑥) = 𝑢0𝑢1𝑥𝑥𝑥 + 𝑢1𝑢0𝑥𝑥𝑥, 
(42) 

𝐴2(𝑢𝑢𝑥𝑥𝑥) = 𝑢1𝑢2𝑥𝑥𝑥 + 𝑢1𝑢1𝑥𝑥𝑥 + 𝑢2𝑢0𝑥𝑥𝑥, 
(43) 

𝐵0(𝑢𝑢𝑥) = 𝑢0𝑢0𝑥, 
(44) 

𝐵1(𝑢𝑢𝑥) = 𝑢0𝑢1𝑥 + 𝑢1𝑢0𝑥, 
(45) 

𝐵2(𝑢𝑢𝑥) = 𝑢1𝑢2𝑥 + 𝑢1𝑢1𝑥 + 𝑢2𝑢0𝑥, 
(46) 

𝐶0(𝑢𝑥𝑢𝑥𝑥) = 𝑢0𝑥𝑢0𝑥𝑥, 
(47) 

𝐶1(𝑢𝑥𝑢𝑥𝑥) = 𝑢0𝑥𝑢1𝑥𝑥 + 𝑢1𝑥𝑢0𝑥𝑥, 
(48) 

𝐶2(𝑢𝑥𝑢𝑥𝑥) = 𝑢1𝑥𝑢2𝑥𝑥 + 𝑢1𝑥𝑢1𝑥𝑥 + 𝑢2𝑥𝑢0𝑥𝑥. 
(49) 

For 𝑖 = 0 in Eq (40), it is obtained as 

𝑢1(𝑥, 𝑡) = ℕ
− [
𝑢𝑎

𝑠𝑎
ℕ+[𝑢0𝑥𝑥𝑡 − 𝑢0𝑥 + 𝑢0𝑢0𝑥𝑥𝑥 − 𝑢0𝑢0𝑥 + 3𝑢0𝑥𝑢0𝑥𝑥]], 

 

 

(50) 

𝑢1(𝑥, 𝑡) = −
1

2
𝑒𝑥/2ℕ− [

𝑢𝑎

𝑠𝑎+1
] = −

1

2

𝑒
𝑥
2tα

Г(α + 1)
. 

For 𝑖 = 1 in Eq (40), it is obtained as 

𝑢2(𝑥, 𝑡) = ℕ
− [
𝑢𝑎

𝑠𝑎
ℕ+[𝑢1𝑥𝑥𝑡 − 𝑢1𝑥 + 𝑢0𝑢1𝑥𝑥𝑥 + 𝑢1𝑢0𝑥𝑥𝑥 − 𝑢0𝑢1𝑥 

−𝑢1𝑢0𝑥+3𝑢0𝑥𝑢1𝑥𝑥 +3𝑢1𝑥𝑢0𝑥𝑥]], 

 

 

 

(51) 

𝑢2(𝑥, 𝑡) = −
1

8
𝑒
𝑥
2
t2α−1

Г(2α)
+
1

4
𝑒
𝑥
2

t2α

Г(2α + 1)
. 

For 𝑖 = 2 in Eq (40), it is obtained as 

𝑢3(𝑥, 𝑡) = ℕ
− [
𝑢𝑎

𝑠𝑎
ℕ+[𝑢2𝑥𝑥𝑡 − 𝑢2𝑥 + 𝑢1𝑢2𝑥𝑥𝑥 + 𝑢1𝑢1𝑥𝑥𝑥 + 𝑢2𝑢0𝑥𝑥𝑥 − 𝑢1𝑢2𝑥 

−𝑢1𝑢1𝑥 − 𝑢2𝑢0𝑥 + 3𝑢1𝑥𝑢2𝑥𝑥 + 3𝑢1𝑥𝑢1𝑥𝑥 + 3𝑢2𝑥𝑢0𝑥𝑥]], 

 

𝑢3(𝑥, 𝑡) = −
1

32
𝑒
𝑥
2

t3α−2

Г(3α − 1)
+
1

8
𝑒
𝑥
2
t3α−1

Г(3α)
−
1

8
𝑒
𝑥
2

t3α

Г(3α + 1)
. 

(52) 

Thus, the numerical solution of Eq (35) is acquired as 
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𝑢(𝑥, 𝑡) = 𝑒𝑥/2 −
1

2
𝑒𝑥/2

tα

Г(α + 1)
−
1

8
𝑒𝑥/2

t2α−1

Г(2α)
+
1

4
𝑒𝑥/2

t2α

Г(2α + 1)
 

−
1

32
𝑒𝑥/2

t3α−2

Г(3α−1)
+
1

8
𝑒𝑥/2

t3α−1

Г(3α)
−
1

8
𝑒𝑥/2

t3α

Г(3α+1)
+⋯     (53) 

For 𝛼 = 1 in Eq (53), it is obtained as 

𝑢(𝑥, 𝑡) = 𝑒
𝑥

2
−
2𝑡

3 .         (54) 

This is the exact solution of Eq (35). Thus, this approximation quickly converges to the exact 

solution. 

Figures 1–4 show the graphs of Eq (53) for different values of 𝛼. 

 

Figure 1. The variation of the exact solution. 

 

Figure 2. The variation of the numerical solution. 
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Figure 3. The variation of the numerical solution. 

 

Figure 4. The variation of the numerical solution. 

Figure 5 depicts the graph of FNTDM solutions for the distinct values of 𝛼 and the exact 

solution to the Eq (35). 

 

Figure 5. The comparison of the FNTDM solutions and the exact solution of Eq (35). 
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Example 2. Consider the time-fractional KdV equation [33] 

{

𝑢𝑡
𝛼(𝑥, 𝑡) + 6𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡) + 𝑢𝑥𝑥𝑥(𝑥, 𝑡) = 0,

0 < 𝛼 ≤ 1, 𝑡 > 0,

𝑢(𝑥, 0) =
1

2
sech2 (

𝑥

2
) .

      (55) 

Applying the NT to Eq (55) and using the differential feature of the NT, it is obtained as 

𝑠𝑎

𝑢𝑎
ℕ+[𝑢(𝑥, 𝑡)] −

𝑠𝑎−1

𝑢𝑎
𝑢(𝑥, 0) = −ℕ+[6𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡) + 𝑢𝑥𝑥𝑥(𝑥, 𝑡)].   (56) 

Rearranging the Eq (56), it is acquired as 

ℕ+[𝑢(𝑥, 𝑡)] =
sech2(

𝑥

2
)

2s
− ℕ+[6𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡) + 𝑢𝑥𝑥𝑥(𝑥, 𝑡)].    (57) 

Applying the INT to Eq (57), we obtain 

𝑢(𝑥, 𝑡) = ℕ− [
sech2(

𝑥

2
)

2s
] − ℕ− [

𝑢𝑎

𝑠𝑎
ℕ+[6𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡) + 𝑢𝑥𝑥𝑥(𝑥, 𝑡)]].   (58) 

As a result of using ADM, Eq (59) is obtained as 

𝑢0(𝑥, 𝑡) = ℕ
− [

sech2(
𝑥

2
)

2s
] =

1

2
sech2 (

𝑥

2
).      (59) 

Generally, the iteration formula in Eq (46) can be written out. 

∑ 𝑢𝑖+1(𝑥, 𝑡)
∞
𝑖=0 = −ℕ− [

𝑢𝑎

𝑠𝑎
ℕ+[6∑ 𝐴𝑖

∞
𝑖=0 +∑ (𝑢𝑥𝑥𝑥)𝑖

∞
𝑖=0 ]] , 𝑖 = 0,1,2,…,   (60) 

where 𝐴𝑖 is Adomian polynomial. These are explained in more detail below: 

𝐴0(𝑢𝑢𝑥) = 𝑢0𝑢0𝑥,         (61) 

𝐴1(𝑢𝑢𝑥) = 𝑢0𝑢1𝑥 + 𝑢1𝑢0𝑥,        (62) 

𝐴2(𝑢𝑢𝑥) = 𝑢1𝑢2𝑥 + 𝑢1𝑢1𝑥 + 𝑢2𝑢0𝑥.       (63) 

For 𝑖 = 0, it can be obtained in the form at Eq (64). 

𝑢1(𝑥, 𝑡) = −ℕ
− [

𝑢𝑎

𝑠𝑎
ℕ+[6𝑢0𝑢0𝑥 + 𝑢0𝑥𝑥𝑥]],      (64) 

𝑢1(𝑥, 𝑡) =
1

2
(
𝑠𝑖𝑛ℎ(

𝑥

2
)

𝑐𝑜𝑠ℎ3(
𝑥

2
)
)ℕ− [

𝑢𝑎

𝑠𝑎+1
] =

1

2
(
𝑠𝑖𝑛ℎ(

𝑥

2
)

𝑐𝑜𝑠ℎ3(
𝑥

2
)
)

tα

Г(α+1)
.    (65) 

For 𝑖 = 1, it is acquired in the Eq (66) manner. 
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𝑢2(𝑥, 𝑡) = −ℕ
− [
𝑢𝑎

𝑠𝑎
ℕ+[6𝑢0𝑢1𝑥 + 6𝑢1𝑢0𝑥 + 𝑢1𝑥𝑥𝑥]] 

 

=
1

4

t2α

Г(2α + 1)
(
2cosh2 (

x
2
) − 3

cosh4(
x
2
)

). 

(66) 

For 𝑖 = 2, it is acquired through the Eq (67). 

𝑢3(𝑥, 𝑡) = ℕ
− [
𝑢𝑎

𝑠𝑎
ℕ+[6𝑢1𝑢2𝑥 + 6𝑢1𝑢1𝑥 + 6𝑢2𝑢0𝑥 + 𝑢2𝑥𝑥𝑥]] 

 

=
3t4αГ(3α + 1)sinh2 (

x
2
)

2Г(α + 1)Г(2α + 1)Г(4α + 1)
(
cosh2 (

x
2
) − 3

cosh8(
x
2
)

) 

 

+
3t3αГ(2α + 1)sinh (

x
2
)

4Г2(α + 1)Г(3α + 1)
(
2cosh2 (

x
2
) − 3

cosh7(
x
2
)

) 

 

+
t3αsinh (

x
2
)

2Г(3α + 1)
(
cosh4 (

x
2
) − 12cosh2 (

x
2
) + 18

cosh7(
x
2
)

). 

(67) 

Thus, the FNTDM solution of Eq (55) is obtained as 

𝑢(𝑥, 𝑡) =
1

2
sech2 (

𝑥

2
) +

1

2
(
𝑠𝑖𝑛ℎ (

𝑥
2
)

𝑐𝑜𝑠ℎ3 (
𝑥
2
)
)

tα

Г(α + 1)
 

 

+
1

4

t2α

Г(2α + 1)
(
2cosh2 (

x
2
) − 3

cosh4(
x
2
)

) 

 

+
3

2

t4αГ(3α + 1)sinh2 (
x
2
)

Г(α + 1)Г(2α + 1)Г(4α + 1)
(
cosh2 (

x
2
) − 3

cosh8(
x
2
)

) 

 

+
3

4

t3αГ(2α + 1)sinh (
x
2
)

Г2(α + 1)Г(3α + 1)
(
2cosh2 (

x
2
) − 3

cosh7(
x
2
)

) 

 

+
1

2

t3αsinh (
x
2
)

Г(3α + 1)
(
cosh4 (

𝑥
2
) − 12cosh2 (

x
2
) + 18

cosh7(
x
2
)

). 

(68) 

Figures 6–9 show the graphs of Eq (68) for different values of 𝛼. 
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Figure 6. The variation of the numerical solution. 

 

Figure 7. The variation of the numerical solution. 

 

Figure 8. The variation of the numerical solution. 
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Figure 9. The variation of the numerical solution. 

The form 𝑢(𝑥, 𝑡) =
1

2
𝑠𝑒𝑐ℎ2(

1

2
(𝑥 − 𝑡)) is the exact solution of the Eq (55). Figure 10 shows the 

graph of FNTDM solutions, and the exact solution of the problem of Eq (55). 

 

Figure 10. The comparison of the FNTDM solutions and the exact solution of the problem 

of Eq (55). 

As shown in Table 2, the FNTDM solution outperforms the variational iteration method (VIM) 

solution in [33]. FNTDM's solution is also shown to be extremely close to the exact solution in 

Table 2. For FNTDM, the absolute error is extremely small, as shown in Table 4. The absolute errors 

incurred by the FNTDM solution, the VIM solution, and the exact solution are compared in Table 4, 

which displays the results of this comparison for each of the different values of x and t. From the data 

presented in Tables 2–4, it can be inferred that FNTDM is more efficient than VIM. In order to show 

the above results, a numerical experiment has been given to compare the approximate solution with 

the results from using VIM. 
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Table 2. Comparison of the exact solution, the fourth- order FNTDM solution and VIM 

solution for 𝛼 = 1. 

𝒙 𝒕 𝐄𝐱𝐚𝐜𝐭 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 FNTDM VIM[33] 

0.5 0.2 0.4944272562 0.4899360367 0.4659756825 

0.5 0.4 0.4993756504 0.5066013315 0.4531705710 

0.5 0.6 0.4993756504 0.5241301786 0.4305272602 

0.5 0.8 0.4944272562 0.5463021537 0.3969809210 

0.5 1.0 0.4847718146 0.5765495376 0.3514667239 

1.0 0.2 0.4625037260 0.4287287736 0.3917081360 

1.0 0.4 0.4783139560 0.4646411668 0.3867501153 

1.0 0.6 0.4901639988 0.5036020808 0.3777335608 

1.0 0.8 0.4975103744 0.5476061887 0.3640422286 

1.0 1.0 0.5000000000 0.5980018021 0.3450598752 

1.5 0.2 0.4102418342 0.3368813877 0.2989675701 

1.5 0.4 0.4328624256 0.3770036331 0.3011816764 

1.5 0.6 0.4533214172 0.4185649249 0.3052203864 

1.5 0.8 0.4708639648 0.4610623277 0.3113688629 

1.5 1.0 0.4847718146 0.5035846877 0.3199122694 

Table 3. Comparison of the fourth-order FNTDM and VIM solutions for 𝛼 = 0.9. 

𝒙 𝒕 FNTDM VIM [33] 

0.5 0.2 0.4935642639 0.4702688983 

0.5 0.4 0.5117317003 0.4590684402 

0.5 0.6 0.5329770263 0.4368821199 

0.5 0.8 0.5618098819 0.4030135996 

0.5 1.0 0.6015583798 0.3565801736 

1.0 0.2 0.4366194018 0.3984853014 

1.0 0.4 0.4761813095 0.3960603473 

1.0 0.6 0.5190508465 0.3877651868 

1.0 0.8 0.5676425491 0.3735652674 

1.0 1.0 0.6230711465 0.3531318417 

1.5 0.2 0.3457491949 0.3030335863 

1.5 0.4 0.3889116028 0.3108887214 

1.5 0.6 0.4313319727 0.3156795722 

1.5 0.8 0.4728708698 0.3212977849 

1.5 1.0 0.5126623876 0.3283282727 
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Table 4. Comparison of absolute error between FNTDM and VIM when 𝑎 = 1. 

 𝒕 

Methods 𝒙 0.00 0.02 0.04 0.06 0.08 0.10 

FNTDM 0

0.00 

0.00000

00000 

0.00002

50010   

0.00010

00166 

0.00022

50844 

0.00040

02665 

0.00062

56504 

VIM  0.00000

00000 

0.00002

50010   

0.00010

00166 

0.00022

50844 

0.00040

02665 

0.00062

56504 

FNTDM 0

0.02 

0.00002

49976 

0.00000

00517 

0.00002

46111 

0.00009

87489 

0.00022

21497 

0.00039

46259 

VIM  0.00002

49976 

0.00009

99866 

0.00022

49976 

0.00040

01031 

0.00062

54007 

0.00090

10125 

FNTDM 0

0.04 

0.00009

99633 

0.00002

48911 

0.00000

08250 

0.00002

23032 

0.00009

37902 

0.00021

31757 

VIM  0.00009

99633 

0.00022

48877 

0.00039

97866 

0.00062

47669 

0.00089

99613 

0.00122

55269 

FNTDM 0

0.06 

0.00022

48146 

0.00009

98022 

0.00002

37362 

0.00000

41670 

0.00001

53344 

0.00008

15088 

VIM  0.00022

48146 

0.00039

95969 

0.00062

42510 

0.00089

89184 

0.00122

37657 

0.00159

89845 

FNTDM 0

0.08 

0.00039

94139 

0.00022

45993 

0.00009

82686 

0.00001

93690 

0.00001

31270 

0.00000

02203 

VIM  0.00039

94139 

0.00062

39522 

0.00089

82042 

0.00122

23457 

0.00159

65772 

0.00202

11240 

FNTDM 0

0.10 

0.00062

35700 

0.00039

91452 

0.00022

26913 

0.00009

28882 

0.00000

08442 

0.00003

19119 

VIM  0.00062

35700 

0.00089

77372 

0.00122

14058 

0.00159

47842 

0.00201

81065 

0.00249

16309 

Example 3. Consider the time-fractional Klein-Gordon equation [34] 

{
𝑢𝑡
𝛼(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) + 𝑢

2(𝑥, 𝑡) = 0,
0 < 𝛼 ≤ 1, 𝑡 ≥ 0,
𝑢(𝑥, 0) = 1 + 𝑠𝑖𝑛𝑥.

       (69) 

By using the NT on Eq (69) and making use of the differential property of the natural transform, 

Eq (70) is obtained as 

𝑠𝑎

𝑢𝑎
ℕ+[𝑢(𝑥, 𝑡)] −

𝑠𝑎−1

𝑢𝑎
𝑢(𝑥, 0) = ℕ+[𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢

2(𝑥, 𝑡)].    (70) 

After some rearrangement of Eq (70), the result can be written as Eq (71). 

ℕ+[𝑢(𝑥, 𝑡)] =
1+𝑠𝑖𝑛𝑥

s
+ℕ+[𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢

2(𝑥, 𝑡)].     (71) 

By applying the INT to Eq (71), one can obtain the result as in Eq (72). 
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𝑢(𝑥, 𝑡) = ℕ− [
1+𝑠𝑖𝑛𝑥

s
] + ℕ− [

𝑢𝑎

𝑠𝑎
ℕ+[𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢

2(𝑥, 𝑡)]].     (72) 

Equation (73) is obtained as a result of using ADM. 

𝑢0(𝑥, 𝑡) = ℕ
− [

1+𝑠𝑖𝑛𝑥

s
] = 1 + 𝑠𝑖𝑛𝑥.       (73) 

Generally, the iteration formula can be written as Eq (74). 

∑ 𝑢𝑖+1(𝑥, 𝑡)
∞
𝑖=0 = ℕ− [

𝑢𝑎

𝑠𝑎
ℕ+[∑ (𝑢𝑥𝑥)𝑖

∞
𝑖=0 − ∑ 𝐴𝑖

∞
𝑖=0 ]] , 𝑖 = 0,1,2,…,   (74) 

where 𝐴𝑖 is Adomian polynomial. This can be demonstrated using the following: 

𝐴0(𝑢
2) = 𝑢0

2, 
(75) 

𝐴1(𝑢
2) = 2𝑢0𝑢1, (76) 

𝐴2(𝑢
2) = 2𝑢0𝑢2 + 𝑢1

2. (77) 

For 𝑖 = 0, it can be found as in Eq (78). 

𝑢1(𝑥, 𝑡) = ℕ− [
𝑢𝑎

𝑠𝑎
ℕ+[𝑢0𝑥𝑥 − 𝑢0

2]] 
(78) 

= (−3𝑠𝑖𝑛𝑥 − 1 − 𝑠𝑖𝑛2𝑥)ℕ− [
𝑢𝑎

𝑠𝑎+1
] 

(79) 

= (−3𝑠𝑖𝑛𝑥 − 1 − 𝑠𝑖𝑛2𝑥)
tα

Г(α + 1)
. 

(80) 

For 𝑖 = 1, Eq (81) is acquired in this manner. 

𝑢2(𝑥, 𝑡) = ℕ
− [

𝑢𝑎

𝑠𝑎
ℕ+[𝑢1𝑥𝑥 − 2𝑢0𝑢1]] =

t2αsinx

Г(2α+1)
(13 − 2cos2x + 10sinx).  (81) 

For 𝑖 = 2, Eq (82) is obtained in the form of 

𝑢3(𝑥, 𝑡) = ℕ
− [
𝑢𝑎

𝑠𝑎
ℕ+[𝑢2𝑥𝑥 − 2𝑢0𝑢2 − 𝑢1

2]] 

 

= (54cos3x − 40sin2x − 46sinx − 53cosx − 46 + 50cos2x − 4cos4x  

+24sinxcos2x)
t3α

Г(3α + 1)
−
(−3sinx − 1 − sin2x)2t3αГ(2α + 1)

Г2(α + 1)Г(3α + 1)
. 

(82) 

Thus, the FNTDM solution of Eq (69) is obtained as 

𝑢(𝑥, 𝑡) = 1 + 𝑠𝑖𝑛𝑥 + (−3𝑠𝑖𝑛𝑥 − 1 − 𝑠𝑖𝑛2𝑥)
tα

Г(α + 1)
 

 

+(54cos3x − 40sin2x − 46sinx − 53cosx − 46 + 50cos2x − 4cos4x  

+24sinxcos2x)
t3α

Г(3α + 1)
+
(3sinx + 1 + sin2x)2t3αГ(2α + 1)

Г2(α + 1)Г(3α + 1)
. 

(83) 

By substituting 𝛼 = 1 in Eq (83), it becomes Eq (84). 
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𝑢(𝑥, 𝑡) = 1 + 𝑠𝑖𝑛𝑥 + (−3𝑠𝑖𝑛𝑥 − 1 − 𝑠𝑖𝑛2𝑥)𝑡 +
t2sinx

2
(13 − 2cos2x + 10sinx) 

 

+(54cos3x − 40sin2x − 46sinx − 53cosx − 46 + 50cos2x  

−4cos4x + 24sinxcos2x)
t3

6
+
(3sinx+1+sin2x)

2
t3

3
. 

(84) 

For different values of 𝛼, graphs of Eq (83) are shown in Figures 11–14. 

 

Figure 11. The variation of the exact solution. 

 

Figure 12. The variation of the numerical solution. 
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Figure 13. The variation of the numerical solution. 

 

Figure 14. The variation of the numerical solution. 

Figure 15 depicts the graph of FNTDM solutions for the given parameters, as well as the exact 

solution to the problem of Eq (69). 

 

Figıre 15. The comparison of the FNTDM solutions and the exact solution of Eq (69). 
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Based on what is presented in Table 5, one can deduce that the FNTDM solution is close to 

homotopy perturbation method (HPM) solution. In addition, the numerical solution that was obtained 

by FVIM is very dissimilar to the solution that was obtained by FNTDM. According to what is shown 

in Table 5, FNTDM is significantly more impressive than fractional variational iteration method 

(FVIM). It has been given a numerical experiment to compare the approximate solution and results 

obtained by both employing HPM in [43] and employing FVIM in [34]. This is done so that the results 

shown above can be demonstrated. 

Table 5. Comparison of the fourth-order FNTDM, fourth-order FVIM and HPM solutions 

for α=1. 

𝒙 𝒕 FNTDM FVIM [34] HPM [43]  

0.5 0.2 0.9936936760 1.0918618880 1.0252028450 

0.5 0.4 0.1719163698 0.9204862583 0.3872139177 

0.5 0.6 -1.6336542300 0.8513963520 -0.9483977960 

0.5 0.8 -5.0707659740 0.7706898780 -3.4954888480 

0.5 1.0 -10.7871667100 0.5644645330 -7.7679157920 

1.0 0.2 1.1363780990 1.3260973680 1.1278077790 

1.0 0.4 -0.0122573375 1.2818890290 -0.0304427681 

1.0 0.6 -3.1903844890 1.4222229150 -3.9315959820 

1.0 0.8 -9.3220562860 1.4604759670 -11.2300577100 

1.0 1.0 -19.7725898200 1.1100251400 -23.6761734600 

1.5 0.2 1.2572942580 1.4316136430 1.1290832020 

1.5 0.4 0.2282734110 1.4636290930 -0.9566144330 

1.5 0.6 -2.2946842630 1.6955418350 -6.4727800640 

1.5 0.8 -7.5166954770 1.7293523710 -17.6325958400 

1.5 1.0 -16.6428769500 1.1670611990 -36.6492438900 

6. Result and discussion 

Inferred from Table 2, it can be seen that the FNTDM solution for FPDEs is extremely close to 

the exact solution. The FNTDM solution for 𝛼 = 1 is illustrated in Table 2. From Table 2, one can 

deduce that the value of this solution rises when 𝑥 remains the same and 𝑡 is made greater. The 

FNTDM solution for the value 𝛼 = 0.9 is presented in Table 3. Table 4 demonstrates that absolute 

error is extremely low and that it approaches zero as the value of fractional order 𝛼 is moved further 

away from one. Table 5 suggests that the FNTDM solution is close to the HPM solution. In addition, 

the numerical solution that was obtained by FNTDM is extremely dissimilar to that which was obtained 
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by FVIM. According to Table 5, it can be seen that FNTDM is more advantageous than FVIM. Maple 

software is used to plot, for a variety of values of the parameter 𝛼, graphs of the numerical solutions 

that were obtained through FNTDM. When the alpha values are lowered, it can be inferred that the 

values of the FNTDM solution will rise as a result. 

The complex process of classifying fractional operators spanned numerous periods, and numerous 

attempts have been made [49–54]. According to our assessment, there is currently no consensus on the 

fundamental classification criteria for fractional operators. The European Organization for Nuclear 

Research, known as CERN-recorded and-reported experimental findings have effectively diminished 

the mathematically sound structures of string theory and super-symmetry in favor of mainstream 

models based on much simpler notions and more physical concepts, such as gauge invariance. When 

creating models utilizing fractional operators, it may not always be beneficial to construct complicated 

fractional operators. In addition, there does not appear to be a unique fractional operator that can be 

used to explain all types of processes with distinct memory effects. We believe that the classification 

of fractional operators into classes is more reasonable from both experimental and mathematical 

perspectives [54]. 

Moreover, the various conceptions of singular and nonsingular fractional operators, along with 

their respective benefits and drawbacks, can exist under the umbrella of classes of operators and the 

powerful concept of memory. 

7. Conclusions 

During the 325-year history of fractional calculus, a critical mass of material has accumulated from 

both mathematical and applied perspectives, and the time has come to make a productive transition. 

Despite the fact that numerical methods for fractional differential equations have made significant 

contributions, they have not yet reached the level required to determine which fractional calculus model 

is most appropriate for a given set of real-world data [49–54]. We believe that one of the keys to the 

success of future theoretical and practical perspectives is to investigate the concept of diverse fractional 

calculus operator classes. This field will be significantly strengthened in the long run if both the benefits 

and limitations of specific fractional operator types are elucidated. Harmonizing the viewpoint that 

fractional operators should have a physical, biological, or economic meaning and should appear naturally 

in a set of real-world processes with the mathematical construction of fractional operators without 

reference to experimental data appears to be a difficult problem for fractional calculus researchers. 

FNTDM is used to obtain numerical solutions to the three well-known nonlinear equations by 

applying the FNTDM algorithm. Table 4 shows that FNTDM outperforms VIM in terms of 

effectiveness. Both FVIM and HPM are shown in Table 5 to be less powerful than FNTDM. For the 

numerical solution of nonlinear time-fractional partial differential equations, it is concluded that 

FNTDM is the best, most effective and reliable tool. FNTDM has found to be an excellent algorithm. 

FNTDM has been utilized to apply for obtaining the numerical solutions of the three famous nonlinear 

equations. FNTDM is more effective than VIM as shown in the comparison in Table 4. Also, FNTDM 

is more powerful than both FVIM and HPM as shown in the comparison in Table 5. It is deduced that 

FNTDM is a superior, effective and reliable tool to determine the numerical solutions of the nonlinear 

time-fractional partial differential equations. It has been shown that FNTDM is an effective algorithm. 

In addition to that, it is demonstrated that this algorithm delivers the solution in the form of a series 

that rapidly and effectively converges to the exact solution being sought. In light of this, FNTDM is a 
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dependable, efficient, and potent method for obtaining analytical solutions for various classes of linear 

and nonlinear time-fractional ordinary and PDEs. 
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