Research article

Empirical likelihood method for detecting change points in network autoregressive models

  • Received: 05 June 2024 Revised: 08 August 2024 Accepted: 14 August 2024 Published: 23 August 2024
  • MSC : 62C12, 62J05, 62G10

  • The network autoregressive model is a super high-dimensional time series model that can fully explain social relationships. This model can fully reflect the complex relationships in reality. Therefore, it plays a vital role in detecting the inflection point problem of this network autoregressive model for economics and finance. In this paper, we proposed the change-point problem of detecting network autoregressive models using empirical likelihood statistics based on the expected error term of the switching rule being 0, using the empirical likelihood method. Moreover, the asymptotic null distribution of the proposed empirical likelihood statistic was investigated. Simulation studies based on different settings were considered, and the results showed that the power of test statistics is significant. In the end, the Chinese stock market was investigated to demonstrate the significance of the proposed method.

    Citation: Jingjing Yang, Weizhong Tian, Chengliang Tian, Sha Li, Wei Ning. Empirical likelihood method for detecting change points in network autoregressive models[J]. AIMS Mathematics, 2024, 9(9): 24776-24795. doi: 10.3934/math.20241206

    Related Papers:

  • The network autoregressive model is a super high-dimensional time series model that can fully explain social relationships. This model can fully reflect the complex relationships in reality. Therefore, it plays a vital role in detecting the inflection point problem of this network autoregressive model for economics and finance. In this paper, we proposed the change-point problem of detecting network autoregressive models using empirical likelihood statistics based on the expected error term of the switching rule being 0, using the empirical likelihood method. Moreover, the asymptotic null distribution of the proposed empirical likelihood statistic was investigated. Simulation studies based on different settings were considered, and the results showed that the power of test statistics is significant. In the end, the Chinese stock market was investigated to demonstrate the significance of the proposed method.



    加载中


    [1] X. Zhu, R. Pan, G. Li, Y. Liu, H. Wang, Network vector autoregression, Ann. Statist., 45 (2017), 1096–1123. http://doi.org/10.1214/16-AOS1476 doi: 10.1214/16-AOS1476
    [2] F. Wei, W. Tian, Heterogeneous connection effects, Stat. Prob. Lett., 133 (2018), 9–14. http://doi.org/10.1016/j.spl.2017.09.015 doi: 10.1016/j.spl.2017.09.015
    [3] X. Zhu, R. Pan, Grouped network vector autoregression, Statistica Sinica., 30 (2020), 1437–1462. http://doi.org/10.5705/ss.202017.0533 doi: 10.5705/ss.202017.0533
    [4] W. Tian, F. Wei, T. Brown, Mixture network autoregressive model with application on students' successes, Front. Math. China., 15 (2020), 141–154. http://doi.org/10.1007/s11464-020-0813-5 doi: 10.1007/s11464-020-0813-5
    [5] S. Huang, H. Chiang, Y. Lin, A network autoregressive model with GARCH effects and its applications, Plo. One, 16 (2021), e0255422. http://doi.org/10.1371/JOURNAL.PONE.0255422 doi: 10.1371/JOURNAL.PONE.0255422
    [6] Y. Tang, Y. Bai, T. Huang, Network vector autoregression with individual effects, Metrika, 84 (2021), 1–19. http://doi.org/10.1007/S00184-020-00805-Y doi: 10.1007/S00184-020-00805-Y
    [7] D. Wang, Y. Yu, A. Rinaldo, Optimal change point detection and localization in sparse dynamic networks, Annal. Stat., 2021. http://doi.org/10.1214/20-AOS1953 doi: 10.1214/20-AOS1953
    [8] X. Xiao, X. Xu, W. Zhong, Huber estimation for the network autoregressive model, Stat. Prob. Lett., 203 (2023). http://doi.org/10.1016/J.SPL.2023.109917 doi: 10.1016/J.SPL.2023.109917
    [9] J. Zhao, J. Liu, Homogeneous analysis on network effects in network autoregressive model, Finance Research Lett., 58 (2023). http://doi.org/10.1016/J.FRL.2023.104671 doi: 10.1016/J.FRL.2023.104671
    [10] E. S. Page, Continuous inspection schemes, Biometrika, 41 (1954), 100–115. https://doi.org/10.1093/biomet/41.1-2.100. doi: 10.1093/biomet/41.1-2.100
    [11] E. S. Page, A test for a change in a parameter occurring at an unknown point, Biometrika, 42 (1955), 523–527. http://doi.org/10.2307/2333401 doi: 10.2307/2333401
    [12] H. J. Kim, Tests for a change-point in linear regression, IMS Lect. Notes-Monogr. Series, 23 (1994), 170–176. Available from: http://www.jstor.org/stable/4355772
    [13] J. Chen, A. K. Gupta, J. Pan, Information criterion and change point problem for regular models, Sankhyā, 68 (2006), 252–282. Available from: https://www.jstor.org/stable/25053496
    [14] C. Jie, Testing for a change point in linear regression models, Commun. Stat.-Simul. Comput., 27 (2007), 2481–2493. http://doi.org/10.1080/03610929808832238 doi: 10.1080/03610929808832238
    [15] D. Basalamah, K. K. Said, W. Ning, Y. Tian, Modified information criterion for linear regression change-point model with its applications, Commun. Stat.-Simul. Comput., 2019, 1–18. http://doi.org/10.1080/03610918.2018.1554109 doi: 10.1080/03610918.2018.1554109
    [16] L. Horváth, G. Rice, Y. Zhao, Testing for changes in linear models using weighted residuals, J. Multivar. Anal., 198 (2023), 105210. http://doi.org/10.1016/J.JMVA.2023.105210 doi: 10.1016/J.JMVA.2023.105210
    [17] Y. Lee, S. Kim, H. Oh, Sequential change-point detection in time series models with conditional heteroscedasticity, Economics Lett., 236 (2024), 111597. http://doi.org/10.1016/J.ECONLET.2024.111597 doi: 10.1016/J.ECONLET.2024.111597
    [18] A. B. Owen, Empirical likelihood ratio confidence Intervals for a single functional, Biometrika, 75 (1988), 237–249. http://doi.org/10.1093/biomet/75.2.237 doi: 10.1093/biomet/75.2.237
    [19] A. B. Owen, A. B. Empirical likelihood ratio confidence regions, Annal.Statist., 18 (1990), 90–120. http://doi.org/10.1214/aos/1176347494 doi: 10.1214/aos/1176347494
    [20] Y. Liu, C. Zou, R. Zhang, Empirical likelihood ratio test for a change-point in linear regression model, Commun. Stat.-Theory Methods, 37 (2008), 2551–2563. http://doi.org/10.1080/03610920802040373 doi: 10.1080/03610920802040373
    [21] W. Ning, Empirical likelihood ratio test for a mean change point model with a linear trend followed by an abrupt change, J. Appl. Stat., 39 (2012), 947–961. http://doi.org/10.1080/02664763.2011.628647 doi: 10.1080/02664763.2011.628647
    [22] H. Zhao, H. Chen, W. Ning, Changepoint analysis by modified empirical likelihood method in two-phase linear regression models, Open J. Appl. Sci., 3 (2013), 1–6.
    [23] X. Wu, S. Zhang, Q. Zhang, S. Ma, Detecting change point in linear regression using jackknife empirical likelihood, Stats. Interf., 9 (2015), 113–122. http://doi.org/10.4310/SII.2016.V9.N1.A11 doi: 10.4310/SII.2016.V9.N1.A11
    [24] F. Akashi, H. Dette, Y. Liu, Change point detection in autoregressive models with no moment assmptions, J. Time Series Anal., 5 (2018), 763–786. https://doi.org/10.1111/jtsa.12405 doi: 10.1111/jtsa.12405
    [25] R. D. P. Gamage, W. Ning, Empirical likelihood for change point detection in autoregressive models, J. Korean Statist. Soci., 2020, 1–29. http://doi.org/10.1007/s42952-020-00061-w doi: 10.1007/s42952-020-00061-w
    [26] K. Yu, H. Wang, C. H. Weiß, An empirical-likelihood-based structural-change test for INAR processes, J. Statist. Comput. Simul., 93 (2023), 442–458. http://doi.org/10.1080/00949655.2022.2109635 doi: 10.1080/00949655.2022.2109635
    [27] Z. Liu, L. Qian, Changepoint estimation in a segmented linear regression via empirical likelihood, Commun. Statist.-Simul. Comput., 39 (2010), 85–100. http://doi.org/10.1080/03610910903312193 doi: 10.1080/03610910903312193
    [28] M. Csörgő, L. Horváth, Limit theorems in Change-Point analysis, New York: Wiley and Sons, 1971.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(414) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog