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Abstract: The network autoregressive model is a super high-dimensional time series model that can
fully explain social relationships. This model can fully reflect the complex relationships in reality.
Therefore, it plays a vital role in detecting the inflection point problem of this network autoregressive
model for economics and finance. In this paper, we proposed the change-point problem of detecting
network autoregressive models using empirical likelihood statistics based on the expected error term
of the switching rule being 0, using the empirical likelihood method. Moreover, the asymptotic
null distribution of the proposed empirical likelihood statistic was investigated. Simulation studies
based on different settings were considered, and the results showed that the power of test statistics is
significant. In the end, the Chinese stock market was investigated to demonstrate the significance of
the proposed method.
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1. Introduction

Nowadays, network research has become increasingly important with the development of science
and technology. A network system is composed of intricate relationships. For example, in a large
social network, the subjects may be connected by more than one type of relationship. Instead, they
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can be complexly connected by multiple types of relationships, named the network autoregressive
models studied by some scholars. Zhu et al. [1] established a network autoregressive model to
study social relationships, which can fully consider all time-series information. However, subjects
within a studied network may not be connected only through one type of association; instead, they
could be complexly connected through multiple types of relationships. Therefore, Wei and Tian [2]
proposed a network regression model with multiple types of connections and considered the impact of
multiple connection nodes on the heterogeneity of continuous response variables. To express individual
heterogeneity, Zhu and Pan [3] developed a grouped network vector autoregressive (GNAR) model
based on the network autoregressive model. Zhu et al. [1] considered both non-specific variables and
various connectivity relationships. Subsequently, Tian et al. [4] proposed a mixed network regression
model that considers non-specific variable dependence on time based on their foundation. Huang
et al. [5] proposed a network autoregressive model with the GARCH effect to describe the return
dynamics of stock market indices. Due to different nodes having different effects on others, Tang
et al. [6] proposed a penalty method for estimating the network vector autoregressive (NAR) models
with different individual effects. Wang et al. [7] proposed a network binary segmentation method for
detecting change points, which relies on a weighted average adjacency matrix. Xiao et al. [8] proposed
the Huber estimator for estimating the parameters of network autoregressive models. Zhao and Liu [9]
proposed the classifier-regularized approach for homogeneous analysis of network effects under the
network autoregressive model.

The change-point problem was first proposed by Page [10] and has been widely applied in many
fields. It mainly detects whether a change has occurred and determines its position. There are many
methods for detecting change points, such as the cumulative sum (CUSUM), likelihood ratio test
(LRT), Schwarz information criterion (SIC), Akaike information criterion (AIC), Bayesian information
criterion (BIC), and modified information approach (MIC). Page [11] considered the problem of
parameter changes in time series based on the CUSUM test. Kim [12] considered a test for a change
point in linear regression by using the likelihood ratio statistic and studied the asymptotic behavior of
the LRT statistic. Chen et al. [13] proposed the MIC for detecting change points in linear regression
models. Jie [14] proposed the SIC to locate change points in simple linear regression models and
multiple linear regression models. Basalamah et al. [15] proposed the MIC method to detect parameter
changes in linear regression models with normally distributed error terms. Recently, Horváth et al. [16]
proposed a weighted function based on the CUSUM of linear model residuals processed to detect the
change points of linear regression models. Lee et al. [17] proposed a detector based on CUSUM of
score vectors and residuals to investigate the sequential process of early detection of parameter changes
in conditional heteroscedasticity time series models.

Empirical likelihood was proposed by Owen [18,19] and has been widely used due to its
robustness to non-parametric properties and the efficiency of likelihood construction. Without knowing
the distribution, the empirical likelihood method can be used to solve the problem, but it has some
limitations in terms of computation. Specifically, many scholars use empirical likelihood methods
to detect change points in regression models. Liu et al. [20] proposed a non-parametric method
based on empirical likelihood to detect coefficient changes in linear regression models. Ning [21]
considered the linear model of mean and proposed a non-parametric method for empirical likelihood
testing to detect and estimate the position of change points. Zhao et al. [22] proposed an improved
empirical likelihood ratio statistic to test for the presence of change points in long-term experiments

AIMS Mathematics Volume 9, Issue 9, 24776–24795.



24778

and observations, which constructed empirical likelihood ratio statistics based on fitting residuals.
Wu et al. [23] proposed a non-parametric method based on jackknife empirical likelihood (JEL) to
detect changes in regression coefficients. Because empirical likelihood was initially proposed for
independent data, applying it to related data such as time series data is difficult. Some scholars have
conducted research on the transformation of dependent data into independent data. Akashi et al. [24]
proposed empirical likelihood ratio statistics to detect change points when the position of the change
point is unknown in autoregressive models. Gamage and Ning [25] used a powerful non-parametric
method to propose empirical likelihood ratio statistics to detect changes in the parameter structure of
autoregressive models. Yu et al. [26] proposed the empirical likelihood ratio test to detect structural
changes in integer autoregressive (INAR) processes.

To the best of our knowledge, scholars have mainly focused on parameter estimation of network
autoregressive models, and no one has used empirical likelihood methods to study the change-point
problem. Detecting change points in network autoregressive models has great practical significance.
For example, we can construct a network autoregressive model due to the intricate connections between
stocks. Since some events may cause changes at a particular moment, detecting the location of these
changes can provide better evidence for experts to study the stock market. According to some scholars,
the idea of empirical likelihood detection of change points was adopted for time series data. Therefore,
it is of great significance to perform change-point detection on network autoregressive models. The
network autoregressive model is a high-dimensional time series model that can explain the natural
world well by constructing adjacency matrices to clarify the relationships between subjects. This
paper considers a non-parametric method to perform change-point detection on complex autoregressive
models without knowing the distribution. In this paper, we propose an empirical likelihood method
based on network autoregressive models to detect structural changes in the model. The structure of this
article is as follows. Hypothesis testing and parameter estimation methods are proposed in Section 2.
The empirical likelihood method is presented in Section 3. The simulation studies are considered in
Section 4. Actual data application is given in Section 5. The conclusion of the paper is presented in
Section 6.

2. The change-point problem in the network vector autoregression model

In the following, we introduce the network autoregressive model proposed by Wei and Tian [2],

Yi,t = β0 +

p∑
k=1

βkn−1
k,i

N∑
j=1

ak
i, jY j,t−1 + βp+1Yi,t−1 + εi,t, (2.1)

where i = 1, ...,N are the network nodes, t = 1, ...,T represents the observation times, Yi,t represents the
response variable of the ith node at time t, β0 is the intercept term, βk characterizes the kth connection
effect for k = 1, ..., p, βp+1 characterizes the momentum effect, and εi,t are the independent random
variables with mean 0 and variance σ2. To describe the network structure composed of N nodes
through the kth relationship, an adjacency matrix is defined: Ak = (ak

i, j) ∈ RN×N , k = 1, ..., p. If node
i and node j have the kth relation, then ak

i, j = 1, otherwise ak
i, j = 0. Since the autocorrelation between

nodes is not considered, the diagonal of the adjacency matrix Ak is set to 0. nk,i =
∑

j,i ak
i, j is the

total number of nodes connected by the ith node through the kth relationship. n−1
k,i

∑N
j=1 ak

i, jY j,t−1 is the
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average impact of the kth connection of the ith node’s neighbors. At the same time, it can be noted that
Yt ∈ RN with 0 ≤ t ≤ T is an ultra-high dimensional time series.

For the convenience of estimating unknown parameters, let Yt = (Y1,t, ...,YN,t)
′

∈ RN , Wk =

diag(n−1
k,1, ..., n

−1
k,N)Ak ∈ RN×N , 1 = (1, ..., 1)

′

∈ RN , and εt = (ε1,t, ..., εN,t)
′

∈ RN . The model (2.1) can be
rewritten as:

Yt = β01 + β1W1Yt−1 + β2W2Yt−1 + · · · + βpW pYt−1 + βp+1Yt−1 + εt . (2.2)

We consider one change point k∗ in the model (2.2), represented as:

Yt =

β01 + β1W1Yt−1 + β2W2Yt−1 + · · · + βpW pYt−1 + βp+1Yt−1 + εt , 1 ≤ t ≤ k∗,

β∗01 + β∗1W1Yt−1 + β∗2W2Yt−1 + · · · + β∗pW pYt−1 + β∗p+1Yt−1 + εt , k∗ + 1 ≤ t ≤ T,
(2.3)

where β = (β0, β1, ..., βp, βp+1)
′

and β∗ = (β∗0, β
∗
1, ..., β

∗
p, β

∗
p+1)

′

are the unknown parameters, and k∗ is
the unknown change-point position the needs to be estimated. To estimate the coefficient vectors β and
β∗, we rewrite model (2.3) as:

Yt =

β01 + β1W1Yt−1 + β2W2Yt−1 + · · · + βpW pYt−1 + βp+1Yt−1 + εt = Xt−1β + εt , 1 ≤ t ≤ k∗,

β∗01 + β∗1W1Yt−1 + β∗2W2Yt−1 + · · · + β∗pW pYt−1 + β∗p+1Yt−1 + εt = Zt−1β
∗ + εt , k∗ + 1 ≤ t ≤ T ,

where Xt−1 = (X1,t−1, ..., XN,t−1)
′

∈ RN×(p+2), Xi,t−1 = (1,w1
i Yi,t−1, ...,w

p
i Yi,t−1,Yi,t−1)

′

∈ Rp+2, wk
i is the ith

row of Wk, for 1 ≤ t ≤ k∗, Zt−1 = (Z1,t−1, ..., ZN,t−1)
′

∈ RN×(p+2), Zi,t−1 = (1,w1
i Yi,t−1, ...,w

p
i Yi,t−1,Yi,t−1)

′

∈

Rp+2, and wk
i is the ith row of Wk for k∗ + 1 ≤ t ≤ T . Thus, the estimated coefficients can be obtained

as follows:

β̂ = (
k∗∑

t=1

X
′

t−1Xt−1)
−1

k∗∑
t=1

X
′

t−1Yt , 1 ≤ t ≤ k∗, (2.4)

β̂∗ = (
T∑

t=k∗+1

Z
′

t−1Zt−1)
−1

T∑
t=k∗+1

Z
′

t−1Yt , k∗ + 1 ≤ t ≤ T. (2.5)

Therefore, model (2.3) can be rewritten as:

Yi,t =

β01 + β1w1
i Yi,t−1 + β2w2

i Yi,t−1 + · · · + βpwp
i Yi,t−1 + βp+1Yi,t−1 + εi,t, 1 ≤ t ≤ k∗,

β∗01 + β∗1w1
i Yi,t−1 + β∗2w2

i Yi,t−1 + · · · + β∗pwp
i Yi,t−1 + β∗p+1Yi,t−1 + εi,t, k∗ + 1 ≤ t ≤ T,

(2.6)

and the errors are estimated in the following,

ε̂i,t(k∗) =

Yi,t − [β01 + β1w1
i Yi,t−1 + β2w2

i Yi,t−1 + · · · + βpwp
i Yi,t−1 + βp+1Yi,t−1], 1 ≤ t ≤ k∗,

Yi,t − [β∗01 + β∗1w1
i Yi,t−1 + β∗2w2

i Yi,t−1 + · · · + β∗pwp
i Yi,t−1 + β∗p+1Yi,t−1], k∗ + 1 ≤ t ≤ T.

According to the switching rule suggested by Liu and Qian [27], the estimated error can be
expressed as follows,

ε̃i,t(k∗) =

Yi,t − [β∗01 + β∗1w1
i Yi,t−1 + β∗2w2

i Yi,t−1 + · · · + β∗pwp
i Yi,t−1 + β∗p+1Yi,t−1], 1 ≤ t ≤ k∗,

Yi,t − [β01 + β1w1
i Yi,t−1 + β2w2

i Yi,t−1 + · · · + βpwp
i Yi,t−1 + βp+1Yi,t−1], k∗ + 1 ≤ t ≤ T.

(2.7)

Under the null hypothesis H0, if no change occurs, we can obtain β = β∗. Therefore, we rewrite
the hypothesis test as

H0 : E(ε̃i,t(k∗)) = 0, for all k∗,

H1 : ∃ a k∗, E(ε̃i,t(k∗)) , 0.

AIMS Mathematics Volume 9, Issue 9, 24776–24795.



24780

3. Empirical likelihood

Notice that under H0, for any k∗ ∈ 1, ...,T , there is E(ε̃i,t(k∗)) = 0. For a fixed k∗, let pi,t(k∗)
be the mass probability at the value ε̃i,t(k∗), and for 1 ≤ i ≤ N, the constraint is

∑T
t=1 pi,t(k∗) = 1.

When pi,t(k∗) = 1
T , for any t = 1, ...T and 1 ≤ i ≤ N, the empirical likelihood

∏T
t=1 pi,t(k∗) reaches its

maximum T−T . The empirical likelihood ratio is
∏T

t=1 T pi,t(k∗). Hence, for 1 ≤ i ≤ N, the empirical
log-likelihood ratio (ELR) statistic is defined as:

<(i, k∗) = sup

 T∑
t=1

log(T pi,t(k∗))|
T∑

t=1

pi,t(k∗) = 1, pi,t(k∗) ≥ 0,
T∑

t=1

pi,t(k∗)ε̃i,t(k∗) = 0

 .
Owen [19] showed, similar to the log-likelihood ratio test statistic in a parametric model, with mild
regular conditions, for 1 ≤ i ≤ N, −2<(i, k∗) → χ2

d in distribution as T → ∞, where d is the rank of
Var(ε̃i,t(k∗)).

Therefore, for 1 ≤ i ≤ N, we propose an ELR test statistic for the change-point detection in
the following,

Zi,k∗ = −2<(i, k∗) = −2 sup

 T∑
t=1

log(T pi,t(k∗))|
T∑

t=1

pi,t(k∗) = 1, pi,t(k∗) ≥ 0,
T∑

t=1

pi,t(k∗)ε̃i,t(k∗) = 0

 .
(3.1)

A Lagrangian argument gives

pi,t(k∗) =
1

T [1 + λiε̃i,t(k∗)]
,

where λi is chosen such that
∑T

t=1 pi,t(k∗)ε̃i,t(k∗) = 0 for 1 ≤ i ≤ N. After plugging back pi,t(k∗) in (3.1),
Zi,k∗ can be rewritten as:

Zi,k∗ = 2

 T∑
t=1

log[1 + λiε̃i,t(k∗)]

 . (3.2)

Define the score function

Φ(λ
′

i) =
∂Zi,k∗

2∂λ′i
=

T∑
t=1

ε̃i,t(k∗)
1 + λiε̃i,t(k∗)

.

Then, λ̂i are determined by
Φ(λ̂i) = 0. (3.3)

Therefore, for 1 ≤ i ≤ N, (3.2) can be rewritten as:

Zi,k∗ = 2

 T∑
t=1

log[1 + λ̂iε̃i,t(k∗)]

 , (3.4)

and we propose the following EL test statistic:

MN,T = max
1≤i≤N,1≤k∗≤T

{
Zi,k∗

}
.
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However, when the position of the change point is close to 1 and T , the estimation efficiency will be
poor because there is little information available for parameter estimation, in part with fewer samples,
which leads to inaccurate estimation. Therefore, we suggest the trimmed likelihood ratio statistic as

M
′

N,T = max
1≤i≤N,k0≤k∗≤T−k0

{
Zi,k∗

}
. (3.5)

To choose suitable values for k0, Csörgő and Horváth [28] gave the conditions of k0 such that
the trimmed test statistic follows an extreme distribution asymptotically. In this paper, we choose
k0 = 2[T

1
2 ] for simplicity and convenience, where [x] means the largest integer not larger than x.

Next, we will outline the main results of the asymptotic distribution under the null hypothesis and
the consistency under the alternative hypothesis.

Theorem 1. Assume that H0 holds and C.1–C.3 are satisfied. Then under the null model,

lim
N,T→∞

Pr
{
A(log u(T ))(M

′

N,T )
1
2 ≤ x + Dr(log u(T ))

}
= exp(−e−x),

for all x, where A(x) = (2 log x)
1
2 , Dr(x) = 2 log x + ( r

2 ) log log x − log Γ( r
2 ), u(T ) =

T 2+(2[T
1
2 ])2−2T [T

1
2 ]

(2[T
1
2 ])2

,

and r is the dimension of the parameter space.

Theorem 2. Under the conditions of Theorem 1, for 1 ≤ i ≤ N, and if there exists a positive constant
c0 satisfying 0 < c0 ≤ supElog(1 + λiε̃i,t(k∗)) < ∞, if change point k∗ satisfies k∗

T → c ∈ (0, 1) as
min(N,T )→ ∞, then the ELR test is consistent. That is, under the alternative hypothesis,

Zi,k∗ → ∞

in probability.

Proofs of the above two theorems are given in the Supplementary Materials.
Theorem 1 indicates that, under the null hypothesis, the asymptotic distribution of the EL test

statistic is the Gumbel extreme value distribution.
For any given r,α, N, and T , if M

′

N,T < cr,α,T, we fail to reject H0, where cr,α,T are the critical values
for r, α, and T . Applying the above Theorem 1, cr,α,T is derived as follows:

1 − α = P[M
′

N,T < cr,α,T |H0] = P[0 < M
′

N,T < cr,α,T |H0]

= P[0 < (M
′

N,T )
1
2 < (cr,α,T )

1
2 |H0]

= P[−Dr(log u(T )) < A(log u(T ))(M
′

N,T )
1
2 − Dr(log u(T )) < A(log u(T ))(cr,α,T )

1
2 − Dr(log u(T ))|H0]

= P[A(log u(T ))(M
′

N,T )
1
2 − Dr(log u(T )) < A(log u(T ))(cr,α,T )

1
2 − Dr(log u(T ))]

− P[A(log u(T ))(M
′

N,T )
1
2 − Dr(log u(T )) < −Dr(log u(T ))]

� exp{− exp{Dr(log u(T )) − A(log u(T ))(cr,α,T )
1
2 }} − exp{− exp{Dr(log u(T ))}}.

Therefore,

cr,α,T �

[
log[− log(1 − α + exp{− exp{Dr(log u(T ))}})] − Dr(log u(T ))

−A(log u(T ))

]2

.
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Tables 1 and 2 provide the critical values cr,α,T for different r, α, and T .

Table 1. Approximate critical values with r = 3, α, and T .

T α = 0.01 α = 0.05 T α = 0.01 α = 0.05
100 22.6973 13.4807 160 22.8862 14.2271
110 22.7598 13.7558 170 22.8737 14.1838
120 22.8177 13.9812 180 22.9103 14.3091
130 22.8076 13.9432 200 22.9301 14.3748
140 22.8562 14.1218 300 23.0595 14.7747
150 22.8445 14.0796 400 23.1329 14.9818

Table 2. Approximate critical values with r = 4, α, and T .

T α = 0.01 α = 0.05 T α = 0.01 α = 0.05
100 22.27445 13.15312 160 22.94089 14.27021
110 22.5194 13.56895 170 22.90245 14.20635
120 22.72195 13.9062 180 23.01337 14.39055
130 22.68795 13.84963 200 23.0713 14.48663
140 22.84742 14.11488 300 23.42141 15.06468
150 22.8099 14.05249 400 23.60132 15.35929

4. Simulation study

In this article, we consider p = 1 and p = 2 in the model (2.1). For the construction of the
adjacency matrix A, we follow the same steps described in Zhu et al. [1].

4.1. The network autoregressive model with p = 1

The adjacency matrix A is constructed from a power-law distribution model: First, we generate
for each node its in-degree di =

∑
j a ji according to the discrete power-law distribution, that is, P(di =

l) = ql−b for a normalizing constant q and the exponent parameter b = 1.2. A smaller b value implies a
heavier distribution tail. Next, for the ith node, we randomly select di nodes to be its followers.

To study the detection performance of our proposed method, we study the values of the power of
the empirical likelihood statistic. Consider the following model:

Yi,t =

β01 + β1w1
i Yi,t−1 + β2Yi,t−1 + εi,t, 1 ≤ t ≤ k∗,

β∗01 + β∗1w1
i Yi,t−1 + β∗2Yi,t−1 + εi,t, k∗ + 1 ≤ t ≤ T.

In our simulation, we set parameters β = (β0, β1, β2)
′

= (0, 0.6, 0.1)
′

and β∗ = (β∗0, β
∗
1, β

∗
2)
′

=

(0,−0.7, 0.8)
′

. Sample sizes N = 25, 30 and T = 100, 200, 400 are considered. At the same time,
we choose the position of the change point k∗ = 0.25T, 0.5T, 0.75T . According to Theorem 1, we
can obtain the p-value and reject the H0 when it is below the significance level α = 0.01, 0.05. At
the same time, we computer the value of the power, which is the probability that the H0 was rejected
in 1000 simulations. Moreover, the values of the power are obtained by considering four different
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distributions of error terms that satisfy E(εi,t) = 0 and Var(εi,t) = 1. The four distributions are
the: (i) Standard normal distribution N(0, 1), (ii) exponential distribution exp(1) − 1, (iii) chi-square
distribution 1

2
√

2
(χ2(4) − 4), and (iv) student-t distribution 1

√
2
t(4). Next, Tables 3–6 show the values

of the power of parameter changes in the network autoregressive model p = 1 detected under four
different distributions.

Table 3. Power of the EL test when p = 1, α = 0.05, and N = 25.

T k∗ N(0, 1) exp(1) − 1 1
2
√

2
(χ2(4) − 4) 1

√
2
t(4)

k∗ = 0 0.032 0.037 0.030 0.045
k∗ = 25 0.978 0.979 0.974 0.982

T = 100 k∗ = 50 0.991 0.992 0.986 0.992
k∗ = 75 0.997 0.996 0.998 0.996
k∗ = 0 0.038 0.039 0.031 0.046

k∗ = 50 0.966 0.975 0.968 0.969
T = 200 k∗ = 100 0.969 0.972 0.976 0.97

k∗ = 150 0.974 0.987 0.99 0.993
k∗ = 0 0.040 0.040 0.038 0.048

k∗ = 100 0.965 0.952 0.952 0.956
T = 400 k∗ = 200 0.967 0.963 0.965 0.961

k∗ = 300 0.973 0.969 0.975 0.974

Table 4. Power of the EL test when p = 1, α = 0.05, and N = 30.

T k∗ N(0, 1) exp(1) − 1 1
2
√

2
(χ2(4) − 4) 1

√
2
t(4)

k∗ = 0 0.018 0.035 0.040 0.044
k∗ = 25 0.985 0.981 0.987 0.988

T = 100 k∗ = 50 0.992 0.994 0.994 0.995
k∗ = 75 0.998 0.999 1 0.999
k∗ = 0 0.022 0.043 0.040 0.020

k∗ = 50 0.974 0.979 0.975 0.984
T = 200 k∗ = 100 0.985 0.982 0.98 0.99

k∗ = 150 0.993 0.991 0.991 0.991
k∗ = 0 0.010 0.035 0.041 0.025

k∗ = 100 0.972 0.973 0.972 0.971
T = 400 k∗ = 200 0.974 0.977 0.977 0.974

k∗ = 300 0.986 0.985 0.98 0.988
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Table 5. Power of the EL test when p = 1, α = 0.01, and N = 25.

T k∗ N(0, 1) exp(1) − 1 1
2
√

2
(χ2(4) − 4) 1

√
2
t(4)

k∗ = 0 0.002 0.010 0.008 0.008
k∗ = 25 0.96 0.956 0.95 0.963

T = 100 k∗ = 50 0.975 0.974 0.971 0.974
k∗ = 75 0.981 0.988 0.985 0.982
k∗ = 0 0.005 0.013 0.008 0.008

k∗ = 50 0.949 0.957 0.946 0.947
T = 200 k∗ = 100 0.957 0.962 0.954 0.95

k∗ = 150 0.964 0.971 0.978 0.975
k∗ = 0 0.011 0.008 0.010 0.011

k∗ = 100 0.945 0.93 0.932 0.934
T = 400 k∗ = 200 0.949 0.936 0.934 0.941

k∗ = 300 0.953 0.962 0.956 0.953

Table 6. Power of the EL test when p = 1, α = 0.01, and N = 30.

T k∗ N(0, 1) exp(1) − 1 1
2
√

2
(χ2(4) − 4) 1

√
2
t(4)

k∗ = 0 0.001 0.002 0.004 0.004
k∗ = 25 0.97 0.963 0.976 0.975

T = 100 k∗ = 50 0.982 0.983 0.977 0.989
k∗ = 75 0.992 0.996 0.997 0.993
k∗ = 0 0.004 0.002 0.007 0.008

k∗ = 50 0.961 0.96 0.957 0.968
T = 200 k∗ = 100 0.972 0.977 0.966 0.977

k∗ = 150 0.985 0.979 0.98 0.985
k∗ = 0 0.007 0.006 0.009 0.010

k∗ = 100 0.954 0.958 0.95 0.948
T = 400 k∗ = 200 0.966 0.959 0.961 0.968

k∗ = 300 0.972 0.974 0.966 0.971

It can be seen from Tables 3–6 that the values of the power are approximately similar for four
different error distributions under the same conditions. For α = 0.05, almost all of the values of the
power are greater than 95%. For α = 0.01, the values of the power reach over 90%. Specifically,
when N = 30, the values of the power of the four distributions at the 0.75T position are generally close
to 1. At the same time, it can effectively control the error of type I when α = 0.01. Moreover, the
values of the power increase as N increases and decrease as T increases. Perhaps due to the relatively
small value of N, there is increasing bias in estimated parameter values, which in turn affects the test
statistic constructed based on the error term. This ultimately leads to a decrease in the values of the
power as T increases. The values of the power change with the position of the change point for all
error distributions and also increase with the increase of the change-point position.
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4.2. The network autoregressive model with p = 2

The constructions method of adjacency matrices A1 and A2 are as follows. First, the adjacency
matrix A1 construction is the same as that of p = 1. Next, the adjacency matrix A2 is simulated from
the stochastic block model with 5 blocks. We randomly assign a block label to each node with equal
probability, set P(ai, j = 1) = 0.3N−0.3 if nodes i and j belong to the same block, and P(ai, j = 1) =

0.3N−1 otherwise.
Then, we study the values of the power of the empirical likelihood statistic. Consider the

following model:

Yi,t =

β01 + β1w1
i Yi,t−1 + β2w2

i Yi,t−1 + β3Yi,t−1 + εi,t, 1 ≤ t ≤ k∗,

β∗01 + β∗1w1
i Yi,t−1 + β∗2w2

i Yi,t−1 + β∗3Yi,t−1 + εi,t, k∗ + 1 ≤ t ≤ T.
The parameters are set to β = (β0, β1, β2, β3)

′

= (0, 0.1, 0.1, 0.1)
′

and β∗ = (β∗0, β
∗
1, β

∗
2, β

∗
3)
′

=

(0,−1,−0.2, 0.6)
′

. Consider the same sample size and change-point position as p = 1. The p-value
based on 1000 simulation runs based on α = 0.01, 0.05 are calculated. Similarly, like the p = 1 model,
we consider the same four distributions for the error term to obtain the values of the power. Next,
Tables 7–10 show the values of the power of parameter changes in the network autoregressive model
p = 2 detected under four different distributions.

Table 7. Power of the EL test when p = 2, α = 0.05, and N = 25.

T k∗ N(0, 1) exp(1) − 1 1
2
√

2
(χ2(4) − 4) 1

√
2
t(4)

k∗ = 0 0.020 0.057 0.044 0.032
k∗ = 25 0.906 0.898 0.905 0.882

T = 100 k∗ = 50 0.916 0.927 0.924 0.916
k∗ = 75 0.945 0.944 0.951 0.957
k∗ = 0 0.033 0.060 0.052 0.044

k∗ = 50 0.861 0.865 0.877 0.872
T = 200 k∗ = 100 0.88 0.891 0.878 0.878

k∗ = 150 0.923 0.923 0.909 0.911
k∗ = 0 0.040 0.070 0.060 0.050

k∗ = 100 0.852 0.856 0.862 0.852
T = 400 k∗ = 200 0.877 0.868 0.876 0.862

k∗ = 300 0.885 0.889 0.89 0.883
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Table 8. Power of the EL test when p = 2, α = 0.05, and N = 30.

T k∗ N(0, 1) exp(1) − 1 1
2
√

2
(χ2(4) − 4) 1

√
2
t(4)

k∗ = 0 0.017 0.050 0.037 0.041
k∗ = 25 0.924 0.932 0.926 0.929

T = 100 k∗ = 50 0.928 0.948 0.943 0.946
k∗ = 75 0.958 0.973 0.975 0.97
k∗ = 0 0.027 0.044 0.047 0.040

k∗ = 50 0.899 0.895 0.9 0.88
T = 200 k∗ = 100 0.909 0.911 0.912 0.927

k∗ = 150 0.936 0.935 0.931 0.939
k∗ = 0 0.020 0.045 0.045 0.047

k∗ = 100 0.859 0.881 0.876 0.875
T = 400 k∗ = 200 0.888 0.882 0.893 0.885

k∗ = 300 0.916 0.91 0.909 0.895

Table 9. Power of the EL test when p = 2, α = 0.01, and N = 25.

T k∗ N(0, 1) exp(1) − 1 1
2
√

2
(χ2(4) − 4) 1

√
2
t(4)

k∗ = 0 0.005 0.008 0.009 0.006
k∗ = 25 0.872 0.862 0.85 0.842

T = 100 k∗ = 50 0.873 0.89 0.873 0.869
k∗ = 75 0.922 0.913 0.915 0.926
k∗ = 0 0.010 0.015 0.013 0.011

k∗ = 50 0.825 0.815 0.826 0.833
T = 200 k∗ = 100 0.84 0.853 0.843 0.843

k∗ = 150 0.878 0.892 0.884 0.875
k∗ = 0 0.018 0.020 0.022 0.020

k∗ = 100 0.822 0.813 0.824 0.809
T = 400 k∗ = 200 0.829 0.828 0.839 0.825

k∗ = 300 0.843 0.856 0.843 0.843
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Table 10. Power of the EL test when p = 2, α = 0.01, and N = 30.

T k∗ N(0, 1) exp(1) − 1 1
2
√

2
(χ2(4) − 4) 1

√
2
t(4)

k∗ = 0 0.004 0.006 0.006 0.008
k∗ = 25 0.89 0.888 0.879 0.882

T = 100 k∗ = 50 0.897 0.912 0.91 0.913
k∗ = 75 0.929 0.944 0.949 0.933
k∗ = 0 0.009 0.013 0.014 0.011

k∗ = 50 0.844 0.862 0.866 0.844
T = 200 k∗ = 100 0.87 0.878 0.868 0.885

k∗ = 150 0.904 0.901 0.902 0.902
k∗ = 0 0.011 0.016 0.016 0.018

k∗ = 100 0.837 0.846 0.842 0.839
T = 400 k∗ = 200 0.858 0.863 0.853 0.845

k∗ = 300 0.872 0.871 0.861 0.861

It can be seen from Tables 7–10 that the results for the case of p = 2 have the same pattern as the
case of p = 1. Although the values of the power for all four distributions have all decreased compared
to the case of p = 1, they are all above 80% for α = 0.05 or α = 0.01. Moreover, the biggest value
of the power appears at the 0.75T position of α = 0.05, N = 30, and T = 100; and the smallest value
of the power appears at the 0.25T position of α = 0.01, N = 25, and T = 400. Meanwhile, it can
be concluded that the proposed method can effectively control type 1 errors. This indicates that the
proposed ELR is sensitive and robust.

5. Application

We apply our method to the Chinese stock market dataset, which contains the daily closing prices
of 30 stocks from August 18, 2022 to November 15, 2023. The detailed information for these 30 stocks
is given in the Supplementary Materials. Furthermore, a time series chart of the daily closing prices
of 30 stocks with different prices from 0 to 230 (CNY) is displayed in Figure 1. In order to make the
time series chart more aesthetically pleasing, we divided them into four charts for display. The stock
prices range from 0–15, as shown in Figure 1(a); 10–40, as shown in Figure 1(b); 20–60, as shown in
Figure 1(c); and 70–230, as shown in Figure 1(d).

The response variables of this dataset (Yi,t, i = 1, ..., 30, t = 1, ..., 300) take into account the daily
closing prices of 30 stocks over 300 days. We consider the following two different connections: A1

is composed of four regional sectors of stocks: Shanghai, Beijing, Shaanxi, and Shenzhen, and A2 is
constructed by five industry sectors: real estate, financial, tourism, media, and technology. Table 11
shows the construction of adjacency matrices. From Formula (3.5), k∗ = 251 with the corresponding
pvalue = 5.6488 × 10−7 can be obtained. Therefore, the change point is detected at position 251,
corresponding to August 29, 2023. In addition, Figure 2 shows the values of Zi,k∗ for 30 stocks
under different k∗ conditions. Figure 2 shows the maximum value of Zi,k∗ at position k∗ = 251, with
M
′

N,T = 112.1537.
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Table 11. Regions and industry sectors of 30 stocks.

Name of stock Regional sector Industry sector
Shanghai Pudong Development Bank (SPDB) Shanghai Financial

Xinhuangpu (XHP) Shanghai Real estate
The Oriental Pearl (TOP) Shanghai Media

Jinjiang Hotel (JJH) Shanghai Tourism
Lujiazui (LJZ) Shanghai Real estate

China Reform Culture (CRC) Shanghai Media
ACM Research ShanghaiH (ACMSH) Shanghai Technology
Bank of Communications (BOCOM) Shanghai Financial

Unisplendour (UNIS) Beijing Technology
UTour Group (Utour) Beijing Tourism

China Youth Travel Service (CYTS) Beijing Tourism
China Duty Free Group (CDFG) Beijing Tourism
China Construction Bank (CCB) Beijing Financial

People’s Daily Online (PDO) Beijing Media
Xinhuanet (XHN) Beijing Media

Beijing North Star (BNS) Beijing Real estate
Beijing Teamsun (TEAMSUN) Beijing Technology

Fenghuo Electronics (FHE) Shaanxi Technology
Xi’an Tourism (XAT) Shaanxi Tourism

Broadcast and TV Network (BTN) Shaanxi Media
Xi’an Bank (XAB) Shaanxi Financial

Qujiang Cultural Tourism (QJCT) Shaanxi Tourism
China Vanke (VANKE) Shenzhen Real estate
Ping An Bank (PAB) Shenzhen Financial

Zhongxing Telecommunication Equipment (ZTE) Shenzhen Technology
China Merchants Shekou (CMS) Shenzhen Real estate
Shenzhen ZQGAME (ZQGAME) Shenzhen Technology
Gemdale Corporation (Gemdale) Shenzhen Real estate
Foxconn Industrial Internet (FII) Shenzhen Technology
China Merchants Bank (CMB) Shenzhen Financial
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(a) The closing price of stocks is between 0 and 15. (b) The closing price of stocks is between 10 and 40.

(c) The closing price of stocks is between 20 and 65. (d) The closing price of stocks is between 70 and 230.

Figure 1. Time series chart of the daily closing prices of 30 stocks.

Figure 2. The values of Zi,k∗ in the data.

The connecting effects before and after August 29, 2023 can be calculated as β̂ = (5.6314 ×
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10−2,−6.9384×10−4,−5.1843×10−5, 9.9816×10−1)
′

and β̂∗ = (9.9786×10−2,−4.022×10−3,−9.6017×
10−4, 9.9765×10−1)

′

. In fact, in late August 2023, the Chinese government issued some home purchase
policies, such as recognizing a house but not a loan, lowering mortgage interest rates, and driving
people’s consumption through implementation in different regions, greatly promoting the development
of the real estate and financial industries. The change in connectivity effect from β̂1 = −6.9384 × 10−4

to β̂∗1 = −4.022× 10−3 may be due to the different implementation times of government-issued housing
policies in different regions. The change in connectivity effect from β̂2 = −5.1843 × 10−5 to β̂∗2 =

−9.6017×10−4 may be due to the degree to which the government’s purchasing policies affect different
industry sectors.

6. Conclusions

In this paper, we considered the EL method to detect structural changes for the network
autoregressive models. The asymptotic null distribution of the test statistic is the Gumbel extreme
value distribution, which was also studied. Through the simulation studies, different error distributions
were illustrated, and the results proved that the proposed test statistic has good performance in detecting
the change points. The simulation experimental results show that our method can effectively identify
changes in the given network autoregressive model. The final application of the Chinese stock market
further demonstrated the practical significance of the proposed method. In the future, we will extend
the network model to the spatiotemporal data and consider the potential change-point problem. On the
other hand, due to the EL method’s computational limitations, we can adopt other methods, such as
JEL and Adjusted Empirical Likelihood (AEL), in the future to improve the computational problem.
Finally, we can also apply the method to more updated network regression models to detect change
points in the future.
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Supplementary Materials

The regular conditions needed are listed as follows. For 1 ≤ i ≤ N, assume
C.1. rank(Xi,t−1)=rank(Zi,t−1)=d for k0 ≤ k∗ ≤ T − k0.
C.2. There are some δ > 0, ν > 0, ν > 2 + 27/min(1 + δ), σ2

i,1 > 0, and σ2
i,2 > 0, and positive-

definite matrices Σi,1, Σi,2 such that as k∗ → ∞ and T − k∗ → ∞,

|
1
k∗

X
′

i,t−1Xi,t−1 − Σi,1| = o(r(k∗)),
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|
1

T − k∗
Z
′

i,t−1Zi,t−1 − Σi,2| = o(r(T − k∗)), (6.1)

|(
k∗∑

t=1

qi,t−1)
′

(Z
′

i,t−1Zi,t−1)−1(
k∗∑

t=1

qi,t−1) − σ2
i,1| = o(r(T − k∗)), (6.2)

|(
T∑

t=k∗+1

qi,t−1)
′

(X
′

i,t−1Xi,t−1)−1(
T∑

t=k∗+1

qi,t−1) − σ2
i,2| = o(r(k∗)), (6.3)

where r(x) = 1/(log x)ν, and | · | is the ordinary norm: |(ai j)| = (
∑

i
∑

j a2
i j)

1/2.
C.3. There is some δ > 0 such that max1≤k∗≤T |qi,t−1| = o(T 1/(2+δ)), and E|εi,t|

2+δ < ∞.
Assumption C.2 is slightly weaker than C.9 in Csörgő and Horváth (1997, page 204) that assumes

Σi,1 = Σi,2. (1/k∗)X
′

i,t−1Xi,t−1 and (1/T − k∗)Z
′

i,t−1Zi,t−1 may have different limits if existing. In the
commonly adapted regression model that (yi,t, xi,t)’s are an independent and identically distributed
sample with E|(yi,t, xi,t)|2+δ < ∞ for some, it is easily seen that C.2 and C.3 hold in probability one. The
first lemma gives an order estimate for max(ε̃i,t(k∗)). Denote ε̄i(k∗) = (1/T )

∑T
t=1 ε̃i,t(k∗),

ε̃i,t =

 εi,t − q
′

i,t−1(Z
′

i,t−1Zi,t−1)−1Z
′

i,t−1γi,2I, 1 ≤ t ≤ k∗,

εi,t − q
′

i,t−1(X
′

i,t−1Xi,t−1)−1X
′

i,t−1γi,1I, k∗ + 1 ≤ t ≤ T,

and s2
i (k∗) = (1/T )

∑T
t=1 ε̃

2
i,t(k

∗).
Lemma 1. Assume that H0 and C.1–C.3 hold. Then

max
1≤t≤T
{ max
k0≤k∗≤T−k0

|ε̃i,t(k∗)|} = OP(T 1/(2+δ)).

Lemma 2. Assume that H0 and C.1–C.3 hold. Then
(a) maxk0≤k∗≤T−k0 |ε̄i(k∗)| = OP(T−1/2 log log1/2 T ).
(b) maxk0≤k∗≤T−k0 s2

i (k∗) = OP(1) and in probability,

lim
T→∞

inf max
k0≤k∗≤T−k0

s2
i (k∗) ≥ σ2

i > 0.

Furthermore, if k→T ∞ as T → ∞, we have maxkT≤k∗≤T−kT |s
2
i (k∗) − σ2

i | = OP(1).
Lemma 3. Assume that H0 and C.1–C.3 hold. Then for some τ > 0,

max
k0≤k∗≤T−k0

|λ̂i − ε̄i(k∗)/s2
i (k∗)| = OP(T−1/2−τ).

The proof process of Lemmas 1–3 is similar to Zhao et al. (2013).
Proof of Theorem 1. First, we use Lemmas 1–3 to obtain a quadratic approximation to −2<(i, k∗),
uniformly in k∗. Following Owen’s (2001, page 221) arguments, denote ζi,t = λ̂iε̃i,t(k∗). Using
Taylor’s expansion,

−2<(i, k∗) = 2
T∑

t=1

log(1 + ζi,t)

= 2
T∑

t=1

{ζi,t −
1
2
ζ2

i,t +
1
3

ζ3
i,t

(1 + ζi,t)3 },

(6.4)
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where |ξi,t| ≤ |ηi,t| = λ̂ε̃i,t(k∗) = OP(1), uniformly in k∗. By Lemmas 1 and 3, for some δ > 0,

max
k0≤k∗≤T−k0

T∑
t=1

{ζi,t −
1
2
ζ2

i,t +
1
3

ζ3
i,t

(1 + ζi,t)3 }

≤ T { max
k0≤k∗≤T−k0

[|λ̂3
i |s

2(k∗)]}max
1≤t≤T

|ε̃i,t(k∗)|

= OP{T−
3
2 +1+ 1

(2+δ) log log2/3 T }

= OP{T−δ/(4+2δ) log log2/3 T }.

(6.5)

Next, by Lemma 3, for some τ > 0,

2
T∑

t=1

ζi,t = 2T ε̄2
i (k∗)/s2(k∗) + T ε̄i(k∗)o(T−1/2−τ)

= 2T ε̄2
i (k∗)/s2

i (k∗) + OP(T−τ(log log T )1/2),

(6.6)

and
T∑

t=1

ζ2
i,t = T ε̄2

i (k∗)/s2
i (k∗) + T ε̄i(k∗)o(T−1/2−τ)

= T ε̄2
i (k∗)/s2

i (k∗) + OP(T−τ(log log T )1/2).

(6.7)

Combining (6.4)–(6.7) yields that for any

0 < τ1 < min{δ/(4 + 2δ), τ},

max
k0≤k∗≤T−k0

| − 2<(i, k∗) − T
ε̄2

i (k∗)
s2

i (k∗)
| = OP(T−τ1). (6.8)

Now applying the Taylor expansion

(a + x)1/2 = a1/2 + x/(2a1/2) + o(x/(a1/2)),

we have for any 0 < τ2 < τ1,

M
′

N,T = { max
1≤i≤N,d≤k∗≤T−d

[− log<(i, k∗)]}1/2

= max
1≤i≤N,k0≤k∗≤T−k0

T 1/2{|ε̄i(k∗)/s2
i (k∗)|} + OP(T−τ2).

(6.9)

Using the same arguments as the proof of Theorem 3.1.2 of Csörgő and Horváth (1997), we have

lim
N,T→∞

Pr
{
A(log u(T ))(M

′

N,T )
1
2 ≤ x + Dr(log u(T ))

}
= exp(−e−x),

because A(log u(T ))OP(T−τ2) = o(1), and it follows from (6.9) that

A(log u(T ))(M
′

N,T ) − Dr(log u(T )) = A(log u(T )){ max
1≤i≤N,k0≤k∗≤T−k0

T 1/2{|ε̄i(k∗)/s2
i (k∗)|}} + OP(1).
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Proof of Theorem 2. Under H1, we can obtain

1
2T

Zi,k∗ =
1
T

sup{
T∑

t=1

log(1 + λ̂iε̃i,t(k∗))}

a.s
−→

sup


1
T

sup{
k∗∑

t=1

log(1 + λ̂i(Yi,t − [β̂01 + GiYi,t−1])}, 1 ≤ t ≤ k∗,

1
T

sup{
T∑

t=k∗+1

log(1 + λ̂i(Yi,t − [β̂∗01 + HiYi,t−1])}, k∗ + 1 ≤ t ≤ T,

a.s
−→

sup

sup cE{log(1 + λ̂i(Yi,t − [β̂01 + GiYi,t−1]))}, 1 ≤ t ≤ k∗,

sup cE{log(1 + λ̂i(Yi,t − [β̂∗01 + HiYi,t−1]))}, k∗ + 1 ≤ t ≤ T,

where Gi =
∑p

k=1 βkwk
i + βp+11 and Hi =

∑p
k=1 β

∗
kwk

i + β∗p+11.
By Jensen’s inequality,

E{log(1 + λ̂i(Yi,t − [β̂01 + GiYi,t−1]))} ≤ log E(1 + λ̂i(Yi,t − [β̂01 + GiYi,t−1])) = 0,

1
2T

Zi,k∗a.s
−→

sup(1 − c)E{log(1 + λ̂i(Yi,t − [β̂∗01 + HiYi,t−1]))} ≤ (1 − c)c0.

Hence, Zi,k∗ → ∞. The proof is complete.
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