Research article Special Issues

The expansivity and sensitivity of the set-valued discrete dynamical systems

  • Received: 18 June 2024 Revised: 29 July 2024 Accepted: 05 August 2024 Published: 14 August 2024
  • MSC : 37D45, 37B40, 54H20

  • Let $(X, d)$ be a metric space and $\mathcal{H}(X)$ represent all non-empty, compact subsets of $X$. The expansivity of the multivalued map sequence $\bar{f}_{1, \infty}: \mathcal{H}(X) \to \mathcal{H}(X)$, including expansivity, positive $\aleph_0$-expansivity, were investigated. Also, stronger forms of sensitivities, such as multi-sensitivity and syndetical sensitivity, were explored. This research demonstrated that some chaotic properties can be mutually derived between $(f_{1, \infty}, X)$ and $(\bar{f}_{1, \infty}, \mathcal{H}(X))$, showing fundamental similarities between these systems. Conversely, the inability to derive other properties underlined essential differences between them. These insights are crucial for simplifying theoretical models and enhancing independent research. Lastly, the relationship between expansivity and sensitivity was discussed and the concept of topological conjugacy to the system $ (\bar{f}_{1, \infty}, \mathcal{H}(X)) $ was extended.

    Citation: Jie Zhou, Tianxiu Lu, Jiazheng Zhao. The expansivity and sensitivity of the set-valued discrete dynamical systems[J]. AIMS Mathematics, 2024, 9(9): 24089-24108. doi: 10.3934/math.20241171

    Related Papers:

  • Let $(X, d)$ be a metric space and $\mathcal{H}(X)$ represent all non-empty, compact subsets of $X$. The expansivity of the multivalued map sequence $\bar{f}_{1, \infty}: \mathcal{H}(X) \to \mathcal{H}(X)$, including expansivity, positive $\aleph_0$-expansivity, were investigated. Also, stronger forms of sensitivities, such as multi-sensitivity and syndetical sensitivity, were explored. This research demonstrated that some chaotic properties can be mutually derived between $(f_{1, \infty}, X)$ and $(\bar{f}_{1, \infty}, \mathcal{H}(X))$, showing fundamental similarities between these systems. Conversely, the inability to derive other properties underlined essential differences between them. These insights are crucial for simplifying theoretical models and enhancing independent research. Lastly, the relationship between expansivity and sensitivity was discussed and the concept of topological conjugacy to the system $ (\bar{f}_{1, \infty}, \mathcal{H}(X)) $ was extended.



    加载中


    [1] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [2] J. T. Sandefur, Discrete dynamical systems: theory and applications, United States: Clarendon Press, 1990.
    [3] X. Yang, T. Lu, A. Waseem, Chaotic properties of a class of coupled mapping lattice induced by fuzzy mapping in non-autonomous discrete systems, Chaos Soliton. Fract., 148 (2021), 110979. https://doi.org/10.1016/j.chaos.2021.110979 doi: 10.1016/j.chaos.2021.110979
    [4] H. Kato, Continuum-wise expansive homeomorphisms, Can. J. Math., 45 (1993), 576–598. https://doi.org/10.4153/CJM-1993-030-4 doi: 10.4153/CJM-1993-030-4
    [5] B. Carvalho, W. Cordeiro, N-expansive homeomorphisms with the shadowing property, J. Differ. Equ., 261 (2016), 3734–3755. https://doi.org/10.1016/j.jde.2016.06.003 doi: 10.1016/j.jde.2016.06.003
    [6] R. Vasisht, R. Das, Specification and shadowing properties for non-autonomous systems, J. Dyn. Control Syst., 28 (2022), 481–492. https://doi.org/10.1007/s10883-021-09535-4 doi: 10.1007/s10883-021-09535-4
    [7] A. Artigue, Dendritations of surfaces, Ergod. Theory Dyn. Syst., 38 (2018), 2860–2912. https://doi.org/10.1017/etds.2017.14 doi: 10.1017/etds.2017.14
    [8] R. Vasisht, R. Das, Generalizations of expansivity in non-autonomous discrete systems, Bull. Iran. Math. Soc., 48 (2022), 417–433. https://doi.org/10.1007/s41980-020-00525-z doi: 10.1007/s41980-020-00525-z
    [9] J. Li, R. Zhang, Levels of generalized expansivity, J. Dyn. Differ. Equat., 29 (2017), 877–894. https://doi.org/10.1007/s10884-015-9502-6 doi: 10.1007/s10884-015-9502-6
    [10] B. Carvalho, W. Cordeiro, N-expansive homeomorphisms with the shadowing property, J. Differ. Equations, 261 (2016), 3734–3755. https://doi.org/10.1016/j.jde.2016.06.003 doi: 10.1016/j.jde.2016.06.003
    [11] D. Richeson, J. Wiseman, Positively expansive dynamical systems, Topol. Appl., 154 (2007), 604–613. https://doi.org/10.1016/j.topol.2006.08.009 doi: 10.1016/j.topol.2006.08.009
    [12] B. Carvalho, W. Cordeiro, Positively N-expansive homeomorphisms and the L-shadowing property, J. Dyn. Differ. Equat., 31 (2019), 1005–1016. https://doi.org/10.1007/s10884-018-9698-3 doi: 10.1007/s10884-018-9698-3
    [13] J. Li, S. M. Tu, Density-equicontinuity and density-sensitivity, Acta Math. Sin.-English Ser., 37 (2021), 345–361. https://doi.org/10.1007/s10114-021-0211-2 doi: 10.1007/s10114-021-0211-2
    [14] J. Pi, T. Lu, Y. Chen, Collective sensitivity and collective accessibility of non-autonomous discrete dynamical systems, Fractal Fract., 6 (2022), 535. https://doi.org/10.3390/fractalfract6100535 doi: 10.3390/fractalfract6100535
    [15] E. H. Sandoval, F. Anstett-Collin, M. Basset, Sensitivity study of dynamic systems using polynomial chaos, Reliab. Eng. Syst. Safe., 104 (2012), 15–26. https://doi.org/10.1016/j.ress.2012.04.001 doi: 10.1016/j.ress.2012.04.001
    [16] D. Ruelle, Sensitive dependence on initial condition and turbulent behavior of dynamical systems, Ann. N.Y. Acad. Sci., 316 (1979), 408–416. https://doi.org/10.1111/j.1749-6632.1979.tb29485.x doi: 10.1111/j.1749-6632.1979.tb29485.x
    [17] A. Fedeli, Topologically sensitive dynamical systems, Topol. Appl., 248 (2018), 192–203. https://doi.org/10.1016/j.topol.2018.09.004 doi: 10.1016/j.topol.2018.09.004
    [18] E. Akin, S. Kolyada, Li–Yorke sensitivity, Nonlinearity, 16 (2003), 1421–1433. https://doi.org/10.1088/0951-7715/16/4/313 doi: 10.1088/0951-7715/16/4/313
    [19] H. Shao, Y. Shi, H. Zhu, Relationships among some chaotic properties of non-autonomous discrete dynamical systems, J. Differ. Equ. Appl., 24 (2018), 1055–1064. https://doi.org/10.1080/10236198.2018.1458101 doi: 10.1080/10236198.2018.1458101
    [20] Q. Huang, Y. Shi, L. Zhang, Sensitivity of non-autonomous discrete dynamical systems, Appl. Math. Lett., 39 (2015), 31–34. https://doi.org/10.1016/j.aml.2014.08.007 doi: 10.1016/j.aml.2014.08.007
    [21] H. Román-Flores, A note on transitivity in set-valued discrete systems, Chaos Soliton. Fract., 17 (2003), 99–104. https://doi.org/10.1016/S0960-0779(02)00406-X doi: 10.1016/S0960-0779(02)00406-X
    [22] J. Zhou, T. Lu, J. Zhao, Chaotic characteristics in Devaney's framework for set-valued discrete dynamical systems, Axioms, 13 (2023), 20. https://doi.org/10.3390/axioms13010020 doi: 10.3390/axioms13010020
    [23] R. Li, T. Lu, G. Chen, G. Liu, Some stronger forms of topological transitivity and sensitivity for a sequence of uniformly convergent continuous maps, J. Math. Anal. Appl., 494 (2021), 124443. https://doi.org/10.1016/j.jmaa.2020.124443 doi: 10.1016/j.jmaa.2020.124443
    [24] J. Pi, T. Lu, Y. Xue, Transitivity and shadowing properties of nonautonomous discrete dynamical systems, Int. J. Bifurcat. Chaos, 32 (2022), 2250246. https://doi.org/10.1142/S0218127422502467 doi: 10.1142/S0218127422502467
    [25] A. Peris, Set-valued discrete chaos, Chaos Soliton. Fract., 26 (2005), 19–23. https://doi.org/10.1016/j.chaos.2004.12.039 doi: 10.1016/j.chaos.2004.12.039
    [26] Y. Zhao, L. Wang, N. Wang, Devaney chaos of a set-valued map and its inverse limit, Chaos Soliton. Fract., 172 (2023), 113454. https://doi.org/10.1016/j.chaos.2023.113454 doi: 10.1016/j.chaos.2023.113454
    [27] H. Román-Flores, Y. Chalco-Cano, Robinson's chaos in set-valued discrete systems, Chaos Soliton. Fract., 25 (2005), 33–42. https://doi.org/10.1016/j.chaos.2004.11.006 doi: 10.1016/j.chaos.2004.11.006
    [28] R. Li, T. Lu, G. Chen, X. Yang, Further discussion on Kato's chaos in set-valued discrete systems, J. Appl. Anal. Comput., 10 (2020), 2491–2505. https://doi.org/10.11948/20190388 doi: 10.11948/20190388
    [29] H. Fu, Z. Xing, Mixing properties of set-valued maps on hyperspaces via Furstenberg families, Chaos Soliton. Fract., 45 (2012), 439–443. https://doi.org/10.1016/j.chaos.2012.01.003 doi: 10.1016/j.chaos.2012.01.003
    [30] X. Yang, Y. Jiang, T. Lu, Chaotic properties in the sense of Furstenberg families in set-valued discrete dynamical systems, Open J. Appl. Sci., 11 (2021), 343–353. https://doi.org/10.4236/ojapps.2021.113025 doi: 10.4236/ojapps.2021.113025
    [31] J. Li, C. Liu, S. Tu, T. Yu, Sequence entropy tuples and mean sensitive tuples, Ergod. Theory Dyn. Sys., 44 (2024), 184–203. https://doi.org/10.1017/etds.2023.5 doi: 10.1017/etds.2023.5
    [32] D. Kwietniak, P. Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos Soliton. Fract., 33 (2007), 76–86. https://doi.org/10.1016/j.chaos.2005.12.033 doi: 10.1016/j.chaos.2005.12.033
    [33] M. Lampart, P. Raith, Topological entropy for set valued maps, Nonlinear Anal., 73 (2010), 1533–1537. https://doi.org/10.1016/j.na.2010.04.054 doi: 10.1016/j.na.2010.04.054
    [34] X. Wang, Y. Zhang, Y. Zhu, On various entropies of set-valued maps, J. Math. Anal. Appl., 524 (2023), 127097. https://doi.org/10.1016/j.jmaa.2023.127097 doi: 10.1016/j.jmaa.2023.127097
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(194) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog