Research article Special Issues

General decay of solutions for a von Karman plate system with general type of relaxation functions on the boundary

  • Received: 04 October 2023 Revised: 30 November 2023 Accepted: 05 December 2023 Published: 22 December 2023
  • MSC : 35B40, 35L05, 37L45, 74D99

  • In this paper, we investigate a von Karman plate system with general type of relaxation functions on the boundary. We derive the general decay rate result without requiring the assumption that the initial value $ w_0 \equiv 0 $ on the boundary, using the multiplier method and some properties of the convex functions. Here we consider the resolvent kernels $ k_i(i = 1, 2) $, namely $ k_i''(t) \geq - \xi_i(t) G_i(-k_i'(t)) $, where $ G_i $ are convex and increasing functions near the origin and $ \xi_i $ are positive nonincreasing functions. Moreover, the energy decay rates depend on the functions $ \xi_i $ and $ G_i. $ These general decay estimates allow for certain relaxation functions which are not necessarily of exponential or polynomial decay and therefore improve earlier results in the literature.

    Citation: Jum-Ran Kang. General decay of solutions for a von Karman plate system with general type of relaxation functions on the boundary[J]. AIMS Mathematics, 2024, 9(1): 2308-2325. doi: 10.3934/math.2024114

    Related Papers:

  • In this paper, we investigate a von Karman plate system with general type of relaxation functions on the boundary. We derive the general decay rate result without requiring the assumption that the initial value $ w_0 \equiv 0 $ on the boundary, using the multiplier method and some properties of the convex functions. Here we consider the resolvent kernels $ k_i(i = 1, 2) $, namely $ k_i''(t) \geq - \xi_i(t) G_i(-k_i'(t)) $, where $ G_i $ are convex and increasing functions near the origin and $ \xi_i $ are positive nonincreasing functions. Moreover, the energy decay rates depend on the functions $ \xi_i $ and $ G_i. $ These general decay estimates allow for certain relaxation functions which are not necessarily of exponential or polynomial decay and therefore improve earlier results in the literature.



    加载中


    [1] A. Rezounenko, Viral infection model with diffusion and distributed delay: finite-dimensional global attractor, Qual. Theory Dyn. Syst., 22 (2023), 11. https://doi.org/10.1007/s12346-022-00707-6 doi: 10.1007/s12346-022-00707-6
    [2] K. H. Zhao, Global stability of a novel nonlinear diffusion online game addiction model with unsustainable control, AIMS Mathematics, 7 (2022), 20752–20766. https://doi.org/10.3934/math.20221137
    [3] K. H. Zhao, Probing the oscillatory behavior of internet game addiction via diffusion PDE model, Axioms, 11 (2022), 649. https://doi.org/10.3390/axioms11110649 doi: 10.3390/axioms11110649
    [4] K. H. Zhao, Attractor of a nonlinear hybrid reaction-diffusion model of neuroendocrine transdifferentiation of human prostate cancer cells with time-lags, AIMS Mathematics, 8 (2023), 14426–14448. https://doi.org/10.3934/math.2023737 doi: 10.3934/math.2023737
    [5] K. Shah, T. Abdeljawad, A. Ali, M. A. Alqudah, Investigation of integral boundary value problem with impulsive behavior involving non-singular derivative, Fractals, 30 (2022), 2240204. https://doi.org/10.1142/s0218348x22402046 doi: 10.1142/s0218348x22402046
    [6] K. Shah, B. Abdalla, T. Abdeljawad, R. Gul, Analysis of multipoint impulsive problem of fractional-order differential equations, Bound. Value Probl., 2023 (2023), 1. https://doi.org/10.1186/s13661-022-01688-w doi: 10.1186/s13661-022-01688-w
    [7] K. Shah, G. Ali, K. J. Ansari, T. Abdeljawad, M. Meganathan, B. Abdalla, On qualitative analysis of boundary value problem of variable order fractional delay differential equations, Bound. Value Probl., 2023 (2023), 55. https://doi.org/10.1186/s13661-023-01728-z doi: 10.1186/s13661-023-01728-z
    [8] I. Chueshov, I. Lasiecka, Global attractors for von Karman evolutions with a nonlinear boundary dissipation, J. Differ. Equations, 198 (2004), 196–231. https://doi.org/10.1016/j.jde.2003.08.008 doi: 10.1016/j.jde.2003.08.008
    [9] A. Favini, M. Horn, I. Lasiecka, D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation, Differ. Integral Equ., 9 (1996), 267–294. https://doi.org/10.57262/die/1367603346 doi: 10.57262/die/1367603346
    [10] M. A. J. Silva, J. E. M. Rivera, R. Racke, On a class of nonlinear viscoelastic Kirchhoff plates: well-posedness and general decay rates, Appl. Math. Optim., 73 (2016), 165–194. https://doi.org/10.1007/s00245-015-9298-0 doi: 10.1007/s00245-015-9298-0
    [11] E. H. G. Tavares, M. A. J. Silva, T. F. Ma, Sharp decay rates for a class of nonlinear viscoelastic plate models, Commun. Contemp. Math., 20 (2018), 1750010. https://doi.org/10.1142/S0219199717500109 doi: 10.1142/S0219199717500109
    [12] V. Komornik, On the nonlinear boundary stabilization of Kirchhoff plates, NoDEA-Nonlinear Diff., 1 (1994), 323–337. https://doi.org/10.1007/BF01194984
    [13] M. L. Santos, J. Ferreira, D. C. Pereira, C. A. Raposo, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary, Nonlinear Anal. Theor., 54 (2003), 959–976. https://doi.org/10.1016/S0362-546X(03)00121-4
    [14] J. R. Kang, General decay for Kirchhoff plates with a boundary condition of memory type, Bound. Value Probl., 2012 (2012), 129. https://doi.org/10.1186/1687-2770-2012-129 doi: 10.1186/1687-2770-2012-129
    [15] M. I. Mustafa, G. A. Abusharkh, Plate equations with viscoelastic boundary damping, Indagat. Math., 26 (2015), 307–323. https://doi.org/10.1016/j.indag.2014.09.005 doi: 10.1016/j.indag.2014.09.005
    [16] A. M. Al-Mahdi, Optimal decay result for Kirchhoff plate equations with nonlinear damping and very general type of relaxation functions, Bound. Value Probl., 2019 (2019), 82. https://doi.org/10.1186/s13661-019-1196-y doi: 10.1186/s13661-019-1196-y
    [17] M. I. Mustafa, Energy decay of dissipative plate equations with memory-type boundary conditions, Asymptotic Anal., 100 (2016), 41–62. https://doi.org/10.3233/ASY-161385 doi: 10.3233/ASY-161385
    [18] M. A. Horn, I. Lasiecka, Uniform decay of weak solutions to a von Karman plate with nonlinear boundary dissipation, Differ. Integral Equ., 7 (1994), 885–908. https://doi.org/10.57262/die/1370267712 doi: 10.57262/die/1370267712
    [19] M. A. Horn, I. Lasiecka, Global stabilization of a dynamic von Karman plate with nonlinear boundary feedback, Appl. Math. Optim., 31 (1995), 57–84. https://doi.org/10.1007/BF01182557 doi: 10.1007/BF01182557
    [20] J. E. M. Rivera, G. P. Menzala, Decay rates of solutions to a von Karman system for viscoelastic plates with memory, Q. Appl. Math., 57 (1999), 181–200. http://www.jstor.org/stable/43638279
    [21] J. R. Kang, General decay rates for a von Karman plate model with memory, Z. Angew. Math. Phys., 73 (2022), 243. https://doi.org/10.1007/s00033-022-01880-z doi: 10.1007/s00033-022-01880-z
    [22] C. A. Raposo, M. L. Santos, General decay to a von Karman system with memory, Nonlinear Anal. Theor., 74 (2011), 937–945. https://doi.org/10.1016/j.na.2010.09.047 doi: 10.1016/j.na.2010.09.047
    [23] J. R. Kang, A general stability for a von Karman system with memory, Bound. Value Probl., 2015 (2015), 204. https://doi.org/10.1186/s13661-015-0466-6 doi: 10.1186/s13661-015-0466-6
    [24] M. Balegh, B. Chentouf, B. Feng, Z. Hajjej, A general stability result for a von Karman system with memory and nonlinear boundary delay term, Appl. Math. Lett., 138 (2023), 108512. https://doi.org/10.1016/j.aml.2022.108512 doi: 10.1016/j.aml.2022.108512
    [25] K. P. Jin, J. Liang, T. J. Xiao, Coupled second order evolution equations with fading memory: optimal energy decay rate, J. Differ. Equations, 257 (2014), 1501–1528. https://doi.org/10.1016/J.JDE.2014.05.018 doi: 10.1016/J.JDE.2014.05.018
    [26] M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134–152. https://doi.org/10.1016/j.jmaa.2017.08.019 doi: 10.1016/j.jmaa.2017.08.019
    [27] M. I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Method Appl. Sci., 41 (2018), 192–204. https://doi.org/10.1002/mma.4604 doi: 10.1002/mma.4604
    [28] J. Y. Park, S. H. Park, Uniform decay for a von karman plate equation with a boundary memory condition, Math. Method. Appl. Sci., 28 (2005), 2225–2240. https://doi.org/10.1002/mma.663 doi: 10.1002/mma.663
    [29] J. R. Kang, General stability for a von Karman plate system with memory boundary conditions, Bound. Value Probl., 2015 (2015), 167. https://doi.org/10.1186/s13661-015-0431-4 doi: 10.1186/s13661-015-0431-4
    [30] F. Alabau-Boussouira, P. Cannarsa, A general method for proving sharp energy decay rates for memory dissipative evolution equations, CR Math., 347 (2009), 867–872. https://doi.org/10.1016/j.crma.2009.05.011
    [31] S. H. Park, General decay of a von Karman plate equation with memory on the bounary, Comput. Math. Appl., 75 (2018), 3067–3080. https://doi.org/10.1016/j.camwa.2018.01.032 doi: 10.1016/j.camwa.2018.01.032
    [32] B. Feng, A. Soufyane, New general decay results for a von Karman plate equation with memory-type boundary conditions, Discrete Cont. Dyn., 40 (2020), 1757–1774. https://doi.org/10.3934/dcds.2020092 doi: 10.3934/dcds.2020092
    [33] J. E. M. Rivera, H. P. Oquendo, M. L. Santos, Asymptotic behavior to a von Karman plate with boundary memory conditions, Nonlinear Anal. Theor., 62 (2005), 1183–1205. https://doi.org/10.1016/j.na.2005.04.025 doi: 10.1016/j.na.2005.04.025
    [34] M. L. Santos, A. Soufyane, General decay to a von Karman plate system with memory boundary conditions, Differ. Integral Equ., 24 (2011), 69–81. https://doi.org/10.57262/die/1356019045 doi: 10.57262/die/1356019045
    [35] J. E. Lagnese, Boundary stabilization of thin plates, Philadelphia: SIAM, 1989. https://doi.org/10.1137/1.9781611970821
    [36] A. M. Al-Mahdi, Optimal decay result for Kirchhoff plate equations with nonlinear damping and very general type of relaxation functions, Bound. Value Probl., 2019 (2019), 82. https://doi.org/10.1186/s13661-019-1196-y doi: 10.1186/s13661-019-1196-y
    [37] V. I. Arnold, Mathematical methods of classical mechanics, New York: Springer-Verlag, 1989. https://doi.org/10.1007/978-1-4757-2063-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(819) PDF downloads(39) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog