Review

A comprehensive review of Grüss-type fractional integral inequality

  • Received: 23 October 2023 Revised: 28 November 2023 Accepted: 06 December 2023 Published: 21 December 2023
  • MSC : 26A33, 26A51, 26D07, 26D10, 26D15

  • A survey of results on Grüss-type inequalities associated with a variety of fractional integral and differential operators is presented. The fractional differential operators includes, Riemann-Liouville fractional integral operators, Riemann-Liouville fractional integrals of a function with respect to another function, Katugampola fractional integral operators, Hadamard's fractional integral operators, $ k $-fractional integral operators, Raina's fractional integral operators, tempered fractional integral operators, conformable fractional integrals operators, proportional fractional integrals operators, generalized Riemann-Liouville fractional integral operators, Caputo-Fabrizio fractional integrals operators, Saigo fractional integral operators, quantum integral operators, and Hilfer fractional differential operators.

    Citation: Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal. A comprehensive review of Grüss-type fractional integral inequality[J]. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112

    Related Papers:

  • A survey of results on Grüss-type inequalities associated with a variety of fractional integral and differential operators is presented. The fractional differential operators includes, Riemann-Liouville fractional integral operators, Riemann-Liouville fractional integrals of a function with respect to another function, Katugampola fractional integral operators, Hadamard's fractional integral operators, $ k $-fractional integral operators, Raina's fractional integral operators, tempered fractional integral operators, conformable fractional integrals operators, proportional fractional integrals operators, generalized Riemann-Liouville fractional integral operators, Caputo-Fabrizio fractional integrals operators, Saigo fractional integral operators, quantum integral operators, and Hilfer fractional differential operators.



    加载中


    [1] F. Cingano, Trends in income inequality and its impact on economic growth, OECD Soc. Employ. Migr. Working Pap., 2014. https://doi.org/10.1787/5jxrjncwxv6j-en doi: 10.1787/5jxrjncwxv6j-en
    [2] M. J. Cloud, B. C. Drachman, L. P. Lebedev, Inequalities with applications to engineering, Springer International Publishing, 2014.
    [3] R. P. Bapat, Applications of inequality in information theory to matrices, Linear Algebra Appl., 78 (1986), 107–117. https://doi.org/10.1016/0024-3795(86)90018-2 doi: 10.1016/0024-3795(86)90018-2
    [4] C. J. Thompson, Inequality with applications in statistical mechanics, J. Math. Phys., 6 (1965), 1812–1813. https://doi.org/10.1063/1.1704727 doi: 10.1063/1.1704727
    [5] S. I. Butt, L. Horváth, D. Pečarić, J. Pečarić, Cyclic improvements of jensen's inequalities: Cyclic inequalities in information theory, Monogr. Inequal., 18 (2020).
    [6] T. Rasheed, S. I. Butt, D. Pečarić, J. Pečarić, Generalized cyclic Jensen and information inequalities, Chaos Soliton. Fract., 163 (2022), 112602. https://doi.org/10.1016/j.chaos.2022.112602 doi: 10.1016/j.chaos.2022.112602
    [7] S. I. Butt, D. Pečarić, J. Pečarić, Several Jensen-Gruss inequalities with applications in information theory, Ukrain. Mate. Zh., 74 (2023), 1654–1672. https://doi.org/10.37863/umzh.v74i12.6554 doi: 10.37863/umzh.v74i12.6554
    [8] N. Mehmood, S. I. Butt, D. Pečarić, J. Pečarić, Generalizations of cyclic refinements of Jensen's inequality by Lidstone's polynomial with applications in information theory, J. Math. Inequal., 14 (2019), 249–271. https://doi.org/10.7153/jmi-2020-14-17 doi: 10.7153/jmi-2020-14-17
    [9] M. Tariq, S. K. Ntouyas, A. A. Shaikh, A comprehensive review of the Hermite-Hadamard inequality pertaining to fractional integral operators, Mathematics, 11 (2023), 1953. https://doi.org/10.3390/math11081953 doi: 10.3390/math11081953
    [10] G. Grüss, Über das Maximum des absoluten betrages von, Math. Z., 39 (1935), 215–226.
    [11] D. S. Mitrinovic, J. E. Pečaric, A. M. Fink, Classical and new inequalities in analysis, Dordrecht, The Netherlands, 1993.
    [12] Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (2010), 93–99.
    [13] J. Tariboon, S. K. Ntouyas, W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Sci., 2014 (2014), 1–6. https://doi.org/10.1155/2014/869434 doi: 10.1155/2014/869434
    [14] M. Z. Sarikaya, H. Yaldiz, N. Basak. New fractional inequalities of Ostrowski-Grüss type, Lobachevskii J. Math., 69 (2014), 227–235. https://doi.org/10.1134/S1995080213040124 doi: 10.1134/S1995080213040124
    [15] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [16] E. Kacar, Z. Kacar, H. Yildirim, Integral inequalities for h(x)-Riemann-Liouville fractional integrals, Iran. J. Math. Sci. Inform., 13 (2018), 1–13. https://doi.org/10.7508/ijmsi.2018.1.001 doi: 10.7508/ijmsi.2018.1.001
    [17] J. V. Sousa, D. S. Oliveira, E. K. Oliveira, Grüss-type inequalities by means of generalized fractional integrals, Bull. Braz. Math. Soc. Ser., 50 (2019), 1029–1047. https://doi.org/10.1007/s00574-019-00138-z doi: 10.1007/s00574-019-00138-z
    [18] T. A. Aljaaidi, D. B. Pachpatte, Some Grüss type inequalities using Katugampola fractional integral, AIMS Math., 5 (2020), 1011–1024. https://doi.org/10.3934/math.2020070 doi: 10.3934/math.2020070
    [19] W. Sudsutad, S. K. Ntouyas, J. Tariboon, Fractional integral inequalities via Hadamard's fractional integral, Abst. Appl. Anal., 2014 (2014), 1–11. https://doi.org/10.1155/2014/563096 doi: 10.1155/2014/563096
    [20] S. Mubeen, G. M. Habibullah, $k$-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94.
    [21] S. K. Ntouyas, J. Tariboon, M. Tomar, Some new integral inequalities for $k$-fractional integrals, Malaya J. Math., 4 (2016), 100–110. https://doi.org/10.26637/mjm401/013 doi: 10.26637/mjm401/013
    [22] E. Set, M. Tomar, M. Z. Sarikaya, On generalized Grüss type inequalities for $k$-fractional integrals, Appl. Math. Comput., 269 (2015), 29–34. https://doi.org/10.1016/j.amc.2015.07.026 doi: 10.1016/j.amc.2015.07.026
    [23] S. Rashid, F. Jarad, M. A. Noor, K. I. Noor, D. Baleanu, J. B. Liu, On Grüss inequalities within generalized $k$-fractional integrals, Adv. Differ. Equ., 203 (2020). https://doi.org/10.1186/s13662-020-02644-7 doi: 10.1186/s13662-020-02644-7
    [24] S. B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y. M. Chu, Integral inequalities via Raina's fractional integrals operator with respect to a monotone function, Adv. Differ. Equ., 647 (2020). https://doi.org/10.1186/s13662-020-03108-8 doi: 10.1186/s13662-020-03108-8
    [25] C. Li, W. Deng, L. Zhao, Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete Contin. Dyn. Syst. Ser. B., 24 (2019), 1989–2015. https://doi.org/10.3934/dcdsb.2019022 doi: 10.3934/dcdsb.2019022
    [26] H. M. Fahad, A. Fernandez, M. U. Rehman, M. Siddiqi, Tempered and Hadamard type fractional calculus with respect to functions, Mediterr. J. Math., 18 (2021), 143. https://doi.org/10.1007/s00009-021-01783-9 doi: 10.1007/s00009-021-01783-9
    [27] G. Rahman, K. S. Nisar, S. Rashid, T. Abdeljawad, Certain Grüss-type inequalities via tempered fractional integrals concerning another function, J. Inequal. Appl., 147 (2020). https://doi.org/10.1186/s13660-020-02420-x doi: 10.1186/s13660-020-02420-x
    [28] S. K. Yildirim, H. Yildirim, Grüss type integral inequalities for generalized $\eta$-conformable fractional integrals, Turk. J. Math. Comput. Sci., 14 (2022), 201–211.
    [29] S. Habib, G. Farid, S. Mubeen, Grüss type integral inequalities for a new class of $k$-fractional integrals, Int. J. Nonlinear Anal. Appl., 12 (2021), 541–554. https://doi.org/10.22075/IJNAA.2021.4836 doi: 10.22075/IJNAA.2021.4836
    [30] G. Rahman, N. K. Sooppy, F. Qi, Some new inequalities of the Grüss type for conformable fractional integrals, AIMS Math., 3 (2018), 575–583. https://doi.org/10.3934/Math.2018.4.575 doi: 10.3934/Math.2018.4.575
    [31] S. Rashid, F. Jarad, M. A. Noor, Grüss-type integrals inequalities via generalized proportional fractional operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 114 (2020), 93.
    [32] T. A. Aljaaidi, D. B. Pachpatte, M. S. Abdo, T. Botmart, H. Ahmad, M. A. Almalahi, et al., $(k, \psi)$-Proportional fractional integral Pólya-Szegö and Grüss-type inequalities, Fractal Fract., 5 (2021), 172. https://doi.org/10.3390/fractalfract5040172 doi: 10.3390/fractalfract5040172
    [33] M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, F. Ahmad, $(k, s)$-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77–89.
    [34] E. Kacar, H. Yildirim, Grüss-type integrals inequalities for generalized Riemann-Liouville fractional integrals, Int. J. Pure. Appl. Math., 101 (2015), 55–70.
    [35] S. Mubeen, S. Iqbal, Grüss type integral inequalities for generalized Riemann-Liouville $k$-fractional integrals, J. Inequal. Appl., 109 (2016). https://doi.org/10.1186/s13660-016-1052-x doi: 10.1186/s13660-016-1052-x
    [36] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. https://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [37] A. B. Nale, S. K. Panchal, V. L. Chinchane, Grüss-type fractional inequality via Caputo-Fabrizio integral operator, Acta Univ. Sapien. Math., 14 (2022), 262–277. https://doi.org/10.2478/ausm-2022-0018 doi: 10.2478/ausm-2022-0018
    [38] M. Saigo, A remark on integral operators involving the Grüss hypergeometric functions, Kyushu Univ., 11 (1978), 135–143.
    [39] V. L. Chinchane, D. B. Pachpatte, On some Grüss-type fractional inequalities using Saigo fractional integral operator, J. Math., 2014 (2014), 1–9. https://doi.org/10.1155/2014/527910 doi: 10.1155/2014/527910
    [40] S. L. Kalla, A. Rao, On Grüss type inequality for a hypergeometric fractional integral, Le Mat., 66 (2011), 57–64. https://doi.org/10.4418/2011.66.1.5 doi: 10.4418/2011.66.1.5
    [41] G. Wang, P. Agarwal, M. Chand, Certain Grüss type inequalities involving the generalized fractional integral operator, J. Inequal. Appl., 147 (2014). https://doi.org/10.1186/1029-242X-2014-147 doi: 10.1186/1029-242X-2014-147
    [42] M. Saigo, N. Maeda, More generalization of fractional calculus, transform methods and special functions, Sci. Sofia, 1996,386–400.
    [43] S. Joshi, E. Mittal, R. M. Pandey, S. D. Purohit, Some Grüss type inequalities involving generalized fractional integral operator, Math. Inform. Phys., 12 (2019), 41–52.
    [44] V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002.
    [45] R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Math. Proc. Cambridge Philos. Soc., 66 (1969) 365–370.
    [46] A. Secer, S. D. Purohit, K. A. Selvakumaran, M. Bayram, A generalized $q$-Grüss inequality involving the Riemann-Liouville fractional $q$-integrals, J. Appl. Math., 2014 (2014), 1–6. https://doi.org/10.1155/2014/914320 doi: 10.1155/2014/914320
    [47] J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Ineq. Appl., 121 (2014). https://doi.org/10.1186/1029-242X-2014-121 doi: 10.1186/1029-242X-2014-121
    [48] M. Bilal, A. Iqbal, S. Rastogi, Quantum symmetric analogue of various integral inequalities over finite intervals, J. Math. Inequal., 17 (2023), 615–627. https://doi.org/10.7153/jmi-2023-17-40 doi: 10.7153/jmi-2023-17-40
    [49] J. Tariboon, S. K. Ntouyas, P. Agarwal, New concepts of fractional quantum calculus and applications to impulsive fractional $q$-Difference equations, Adv. Differ. Equ., 18 (2015). https://doi.org/10.1186/s13662-014-0348-8 doi: 10.1186/s13662-014-0348-8
    [50] W. Sudsutad, S. K. Ntouyas, J. Tariboon, Integral inequalities via fractional quantum calculus, J. Ineq. Appl., 81 (2016). https://doi.org/10.1186/s13660-016-1024-1 doi: 10.1186/s13660-016-1024-1
    [51] S. Iqbal, M. Samraiz, G. Rahman, K. S. Nisar, T. Abdeljawad, Some new Grüss inequalities associated with generalized fractional derivative, AIMS Math., 8 (2022), 213–227. https://doi.org/10.3934/math.2023010 doi: 10.3934/math.2023010
    [52] S. Naz, M. N. Naeem, Y. M. Chu, Some $k$-fractional extension of Grüss-type inequalities via generalized Hilfer-Katugampola derivative, Adv. Differ. Equ., 29 (2021). https://doi.org/10.1186/s13662-020-03187-7 doi: 10.1186/s13662-020-03187-7
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(969) PDF downloads(102) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog