Research article

Classification of Möbius homogeneous curves in $ \mathbb{R}^4 $

  • Received: 25 May 2024 Revised: 09 July 2024 Accepted: 18 July 2024 Published: 26 July 2024
  • MSC : 53A04, 53A31

  • In this paper, we investigate the Möbius geometry of curves in $ \mathbb{R}^4 $. First, using moving frame methods we construct a complete system of Möbius invariants for regular curves in $ \mathbb{R}^4 $ by the isometric invariants. Second, we completely classify the Möbius homogeneous curves in $ \mathbb{R}^4 $ up to a Möbius transformation of $ \mathbb{R}^4 $.

    Citation: Tongzhu Li, Ruiyang Lin. Classification of Möbius homogeneous curves in $ \mathbb{R}^4 $[J]. AIMS Mathematics, 2024, 9(8): 23027-23046. doi: 10.3934/math.20241119

    Related Papers:

  • In this paper, we investigate the Möbius geometry of curves in $ \mathbb{R}^4 $. First, using moving frame methods we construct a complete system of Möbius invariants for regular curves in $ \mathbb{R}^4 $ by the isometric invariants. Second, we completely classify the Möbius homogeneous curves in $ \mathbb{R}^4 $ up to a Möbius transformation of $ \mathbb{R}^4 $.



    加载中


    [1] Z. Guo, H. Li, Conformal invariants of submanifolds in a Riemannian space and conformal rigidity theorems on Willmore hypersurfaces, J. Geom. Anal., 28 (2018), 2670–2691. https://doi.org/10.1007/s12220-017-9928-7 doi: 10.1007/s12220-017-9928-7
    [2] T. Z. Li, J. Qing, C. P. Wang, Möbius curvature, Laguerre curvature and Dupin hypersurface, Adv. Math., 311 (2017), 249–294. https://doi.org/10.1016/j.aim.2017.02.024 doi: 10.1016/j.aim.2017.02.024
    [3] C. P. Wang, Moebius geometry of submanifolds in $S^n$, Manuscripta Math., 96 (1998), 517–534. https://doi.org/10.1007/s002290050080 doi: 10.1007/s002290050080
    [4] U. Hertrich-Jeromin, Introduction to Möbius differential geometry, Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511546693
    [5] R. Sulanke, Curves of constant curvatures in Möbius geometry, Math. Notebook, 2010.
    [6] M. Magliaro, L. Marri, M. Rigoli, On the geometry of curves and conformal geodesics in the Möbius space, Ann. Glob. Anal. Geom., 40 (2011), 133–165. https://doi.org/10.1007/s10455-011-9250-8 doi: 10.1007/s10455-011-9250-8
    [7] K. F. Aksoyak, A new type of quaternionic frame in $\mathbb{R}^4$, Int. J. Geom. Methods Mod. Phys., 16 (2019), 1950084. https://doi.org/10.1142/S0219887819500841 doi: 10.1142/S0219887819500841
    [8] Y. Long, Conformal invariants of curves in $3$-dimensional space, Adv. Math., 36 (2007), 693–709.
    [9] Op. Nave, Modification of semi-analytical method applied system of ODE, Mod. Appl. Sci., 14 (2020), 75. https://doi.org/10.5539/mas.v14n6p75 doi: 10.5539/mas.v14n6p75
    [10] R. Sulanke, Submanifolds of the Möbius space, Ⅱ Frenet formulas and curves of constant curvatures, Math. Nachr., 100 (1981), 235–247. https://doi.org/10.1002/mana.19811000114 doi: 10.1002/mana.19811000114
    [11] A. F. Beardon, The geometry of discrete groups, Springer-Verlag, 1983. https://doi.org/10.1007/978-1-4612-1146-4
    [12] B. O'Neil, Semi-Riemannian geometry, Academic Press, 1983.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(408) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog