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1. Introduction

Recently, the study of Möbius geometry of submanifolds in space forms is a well-developed field
in differential geometrisch. For examples, readers can refer to [1–3] and so on. A monograph on a
comprehensive introduction to Möbius geometry is [4] of Hertrich-Jeromin.

There are also many studies on the Möbius geometry of curves (one dimensional submanifolds). By
using Cartan’s method of moving frames, Sulanke in [5] provided the complete Möbius invariants of
the generally curved curves in Rn and fundamental theorem of the curves, which state the existence and
uniqueness (up to Möbius transformations) of a curve with given Möbius curvatures. In [6], Magliaro
et al. studied some properties of immersed curves in the conformal sphere Qn, which is viewed as
a homogeneous space under the action of the Möbius group. Many authors have studied Möbius
geometry of curves and provided the complete Möbius invariant systems for curves in R3 by using the
osculating sphere of the curves (see [7–9]).

In this paper, we investigate the Möbius geometry of curves in R4. Although the Möbius invariants
of the curves in R4 were provided in [5], exist theoretically, and expression is not specifically given.
In this paper, we provide an explicit expression for the Möbius invariants of the curves in R4 by the
isometric invariants. These Möbius invariants contain the first Möbius curvature κc, the second Möbius
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curvature νc, and the third Möbius curvature µc, expressions are given in Section 3. Thus we prove the
following fundamental theorem of curves in R4.

Theorem 1.1. Let γ: I → R4 be a smooth regular curve in R4. We assume that the curve γ is not
contained in any three-dimensional affine subspace. Then the first Möbius curvature κc, the second
Möbius curvature νc, and the third Möbius curvature µc determined the curve γ up to a Möbius
transformation of R4.

Using the Möbius invariants, we study a notable class of immersed curves: the Möbius
homogeneous curves in R4. A curve

x : I ⊆ R→ Rn

is called a Möbius homogeneous curve if the curve is an orbit of a subgroup of the Möbius
transformation group of Rn. Such curves are the most symmetries among all curves in Rn (in the
extrinsic sense). In [10], Sulanke classified the Möbius homogeneous curves in R2 and R3. In this
paper, our main goal is to classify the Möbius homogeneous curves in R4.

Standard examples of Möbius homogeneous curves in Rn are the images of Möbius transformations
of the isometric homogeneous curves in Rn. The isometric homogeneous curve in Rn is an orbit of a
subgroup of the isometric transformation group of Rn. The second examples of Möbius homogeneous
curves in R4 comes from isometric homogeneous curves in 3-dimensional sphere S3. In this paper,
we construct the third examples of Möbius homogeneous curves in R4 (see Section 3), which are not
isometric homogeneous curve. We also indicate which subgroup’s orbit these Möbius homogeneous
curves belong to. The main theorem is as follows:

Theorem 1.2. Let γ: I → R4 be a Möbius homogeneous curve. Then γ(I) is Möbius equivalent to one
of the following seven classes of curves:

(1) The straight lines in R2 ⊂ R4;

(2) The circles in R2 ⊂ R4;

(3) The cylindric spiral in R3 ⊂ R4 given by Example 2.1;

(4) The ring-curve in R3 ⊂ R4 given by Example 2.2;

(5) The logarithmic spirals in R2 ⊂ R4 given by Example 2.3;

(6) The space cylinder spiral in R3 ⊂ R4 given by Example 2.4;

(7) The torus spirals in R4 given by Example 2.5.

We organize the paper as follows. In Section 2, we review the basic theory and facts about the
Möbius transformation group of Rn and some examples of Möbius homogeneous curves. In Section 3,
we give the Möbius invariants of curves in R4. In Section 4, we prove our main Theorem 1.2.

2. Examples of Möbius homogeneous curves

In this section, we review some facts about the Möbius transformation group. For the details, we
refer to [11], or [12]. And we present and construct some examples of Möbius homogeneous curves.

A diffeomorphism ϕ: Sn → Sn is said to be a Möbius transformation, if ϕ takes the set of round
(n−1)-spheres into the set of round (n−1)-spheres. All Möbius transformations form a transformation
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group, which is called the Möbius transformation group of Sn and denoted by M(Sn). It is well-
known that, for n ≥ 2, the Möbius transformation group M(Sn) of Sn coincides with the conformal
transformation group of Sn, denoted by C(Sn), i.e.,

M(Sn) = C(Sn).

Since Rn ∪ {∞} is conformal to Sn, We also call

M(Sn) = M(Rn ∪ {∞})

the Möbius transformation group of Rn. Clearly, we have C(Rn) ⊆ M(Sn).
Let Rn+1 denote the (n + 1)-dimensional Euclidean space, and a dot “·” represents its inner product.

The n-dimensional sphere is
Sn = {x ∈ Rn+1|x · x = 1}.

The hypersphere S p(ρ) in Sn with center p ∈ Sn and radius ρ, is given by

S p(ρ) = {y ∈ Sn|p · y = cos ρ}, 0 < ρ < π.

Let
Dn+1 = {x ∈ Rn+1|x · x ≤ 1}.

Taking o ∈ Rn+1 such that o < Dn+1, a line l that passes through the point o intersects the sphere Sn in
two points p, q. Now we define the Möbius inversion Υo for the point

o < Dn+1 ⊂ Rn+1

as follows:
Υo : Sn → Sn, Υo(p) = q.

Clearly, Υo ∈ M(Sn). When the point o is at infinity, the Möbius inversion is indeed a reflection
Υo ∈ O(n + 1),which is an isometric transformation of Sn. The following proposition is well-known,
and readers can refer to [11] or [12] .

Proposition 2.1. [11,12] The Möbius transformation groupM(Sn) is generated by Möbius inversions
Υo.

Let Rn+2
1 be the Lorentz space, i.e., Rn+2 with the scalar product ⟨, ⟩ defined by

⟨x, y⟩ = −x0y0 + x1y1 + · · · + xn+1yn+1

for
x = (x0, x1, · · · , xn+1), y = (y0, y1, · · · , yn+1) ∈ Rn+2.

Let GL(Rn+2) be the set of invertible (n + 2) × (n + 2) matrix, then the Lorentz orthogonal group
O(n+1,1) is defined by

O(n+1,1) = {T ∈ GL(Rn+2) | T I1T t = I1},

where T t denotes the transpose of the matrix T and

I1 =

(
−1 0
0 I

)
,
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and I is the (n + 1) × (n + 1) unit matrix.
The positive light cone is

Cn+1
+ = {y = (y0, y⃗1) ∈ R × Rn+1 = Rn+2

1 | ⟨y, y⟩ = 0, y0 > 0},

and O+(n + 1, 1) is the subgroup of O(n+1,1) defined by

O+(n + 1, 1) = {T ∈ O(n+1,1) | T (Cn+1
+ ) = Cn+1

+ }.

Proposition 2.2. [12] Let

T =
(
w u
v Q

)
∈ O(n+1,1),

where Q is an (n + 1) × (n + 1) matrix. Then T ∈ O+(n + 1, 1) if and only if w > 0.

It is well-known that the subgroup O+(n + 1, 1) is isomorphic to the Möbius transformation group
M(Sn). In fact, for any

T =
(
w u
v Q

)
∈ O+(n + 1, 1),

we can define the Möbius transformation

Ψ(T ) : Sn 7→ Sn

by

Ψ(T )(x) =
Qxt + v
uxt + w

, x = (x1, · · · , xn+1) ∈ Sn.

Then the map
Ψ : O+(n + 1, 1) 7→ M(Sn)

is a group isomorphism.
Let A ∈ O(n + 1) be an isometric transformation of Sn, then A ∈ M(Sn) and

Ψ−1(A) =
(
1 0
0 A

)
∈ O+(n + 1, 1).

Thus,
Ψ−1(O(n + 1)) ⊂ O+(n + 1, 1)

is a subgroup.
The n-dimensional sphere Sn is diffeomorphic to the projective light cone PCn,

PCn = {[z] ∈ PRn+2 | z ∈ Cn+1
+ }.

The diffeomorphism Φ: Sn → PCn is given by

Φ(x) = [y] = [(1, x)].

The group O+(n + 1, 1) acts on PCn by

T [p] = [T p], T ∈ O+(n + 1, 1), [p] ∈ PCn.
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By the conformal diffeomorphic σ, the Möbius transformation group of the n-dimensional
Euclidean space Rn is

M(Rn) = {ϕ ∈ M(Sn)| ϕ((−1, 0⃗)) = (−1, 0⃗)}.

By the conformal diffeomorphic σ, we have the diffeomorphism

Φ ◦ σ : Rn ∪ {∞} → PCn

given by
Φ ◦ σ(p) = [(p · p + 1, p · p − 1, 2p)], Φ ◦ σ(∞) = [(1,−1, 0, · · · , 0)].

Let S (p,r) be a hypersphere in Rn with center p and radius r, and

δ(p,r) =
1
2r

(p · p − r2 + 1, p · p − r2 − 1, 2p) (2.1)

a point in Rn+2
1 such that

⟨δ(p,r), δ(p,r)⟩ = 1.

We call δ(p,r) the sphere coordinates corresponding to the hypersphere S (p,r).
Let P(p,N) be the hyperplane in Rn passing p with normal vector N, and

π(p,N) = (p · N, p · N,N) (2.2)

a point in Rn+2
1 such that

⟨π(p,N), π(p,N)⟩ = 1.

We call π(p,N) the sphere coordinates corresponding to the hyperplane P(p,N).
By direct computation, we have the results.

Proposition 2.3. Let S 1, S 2 be two spheres or hyperplanes and δ1, δ2 its sphere coordinates, then

(1) S 1 and S 2 are internally tangent if and only if ⟨δ1, δ2⟩ = 1.

(2) S 1 and S 2 are externally tangent if and only if ⟨δ1, δ2⟩ = −1.

(3) S 1 and S 2 are perpendicular if and only if ⟨δ1, δ2⟩ = 0.

Let γ: I → Rn be a parameter representation of a curve in Rn, and s its arclength. By the
diffeomorphism Φ ◦ σ, we have the curve in PCn,

Xγ = Φ ◦ σ ◦ γ : I → PCn, Xγ(s) = Φ ◦ σ ◦ γ(s).

Thus we have the following well-known results:

Theorem 2.1. [5] Two curves γ(s), γ̃(s) in Rn are Möbius equivalent if and only if there exists T ∈
O+(n + 1, 1) such that

X̃γ̃ = T ◦ Xγ.

Let G be a subgroup ofM(Sn). For any point p ∈ Sn, the orbit of G through p is

G · p = {ϕ(p)| ϕ ∈ G}.
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Definition 2.1. A regular curve γ: I → Rn is called a Möbius homogeneous curve in Rn if there exists
a subgroup G ⊂ M(Rn) such that the orbit

γ(I) = G · p, p ∈ γ(I).

It is easy to construct a Möbius homogeneous curve from a subgroup of O+(n + 1, 1), whose action
on Rn+2

1 is linear. By Theorem 2.1, we have the following proposition:

Proposition 2.4. A regular curve γ: I → Rn is a Möbius homogeneous curvae in Rn if and only if there
exists a subgroup G ⊂ O+(n + 1, 1) such that the orbit

G · p = Xγ(I), p ∈ Cn+1
+ ,

that is, Xγ is a homogeneous curve in Rn+2
1 .

Standard examples of Möbius homogeneous curves in Rn are the images of Möbius transformations
of the isometric homogeneous curves inRn. Clearly, the circles and the straight lines inRn are isometric
homogeneous curves. Next we present two other class of curves, which are all isometric homogeneous
curves.

Example 2.1. Let a > 0, b > 0. The cylindric spiral in R3 is defined by,

γ : R→ R3, γ(t) = (a cos t, a sin t, bt).

Then a cylindrical spiral is an isometric homogeneous curve in R3 ⊂ R4.

The second example of Möbius homogeneous curves in R4 comes from isometric homogeneous
curves in the 3-dimensional sphere S3. To clearly express this type of curve, we need the stereographic
σ. The stereographic σ is a conformal diffeomorphism and is defined by

σ : Rn → Sn\{(−1, 0̄)},

which are defined as follows:

σ(u) = (
1 − |u|2

1 + |u|2
,

2u
1 + |u|2

), u ∈ Rn.

Using σ, we can regard a curve in Sn as a curve in Rn. Due to conformal invariance, the theory of
Möbius geometry of curves is essentially the same whether it is considered in Rn or Sn.

Example 2.2. Let a > 1, 0 < b < 1, and

c =
b
√

a2 − 1
√

a2 − b2
,

the ring-curve is defined in S3 by

γ : R→ S3, γ(t) = (c cos at, c sin at,
√

1 − c2 cos bt,
√

1 − c2 sin bt).

Then the ring-curve is an isometric homogeneous curve in S3, and the image of σ−1 of the ring-curve
γ is a Möbius homogeneous curve in R3 ⊂ R4, which call also the ring-curve in R3.
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Next we construct some Möbius homogeneous curves, which are not isometric homogeneous curve.
And we use it as an orbital of a subgroup ofM(Sn) to prove that it is a Möbius homogeneous curve.

Example 2.3. Let a > 0, b > 0. The logarithmic spiral is defined in R2 by

γ : R→ R2, γ(t) = eat(cos bt, sin bt).

Then logarithmic spiral is a Möbius homogeneous curve in R2 ⊂ R4.

Proposition 2.5. The logarithmic spiral given by Example 2.3 is a Möbius homogeneous curve in R2.

Proof. Up to a similarity, we consider the logarithmic spiral

γ(t) = eat(cos t, sin t).

Thus we have the curve Xγ in PC2,

Xγ = [(cosh at, sinh at, cos t, sin t)].

Let

G2 =


cosh at sinh at 0 0
sinh at cosh at 0 0

0 0 cos t sin t
0 0 − sin t cos t

 .
Then G2 is a subgroup of O+(3, 1), and the logarithmic spiral Xγ is the orbit of G2 acting on the point

p = (1, 0, 1, 0) ∈ C3
+.

Thus the logarithmic spiral is a Möbius homogeneous curve in R2. □

Example 2.4. Let a > 0, b > 1, and

c =
a
b

√
b2 − 1
a2 + 1

,

the space cylinder spiral is defined in R3 by

γ : R→ R3, γ(t) = eat(c cos bt, c sin bt,
√

1 − c2).

Then space cylinder spiral is a Möbius homogeneous curve in R3 ⊂ R4.

Proposition 2.6. The space cylinder spiral given by Example 2.4 is a Möbius homogeneous curve in
R3.

Proof. The space cylinder spiral

γ(t) = eat(c cos bt, c sin bt,
√

1 − c2)

corresponds to the curve Xγ in PC3,

Xγ = [(cosh at, sinh at, c cos bt, c sin bt,
√

1 − c2)].
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Let

G3 =



cosh at sinh at 0 0 0
sinh at cosh at 0 0 0

0 0 cos bt sin bt 0
0 0 − sin bt cos bt 0
0 0 0 0 1


.

Then G3 is a subgroup of O+(4, 1), and the space cylinder spiral Xγ(t) is the orbit of G3 acting on the
point

p = (1, 0, c, 0,
√

1 − c2) ∈ C4
+.

Thus the space cylinder spiral is a Möbius homogeneous curve in R3. □

Example 2.5. Let a > b > 0, c > 0. The torus spiral is defined in R4 by,

γ : R→ R4, γ(t) = et(cos at, sin at, c cos bt, c sin bt).

Then the torus spiral is a Möbius homogeneous curve in R4.

Proposition 2.7. The torus spiral given by Example 2.5 is a Möbius homogeneous curve in R4.

Proof. The torus spiral

γ(t) = et(
√

1 − c2 cos at,
√

1 − c2 sin at, c cos bt, c sin bt)

corresponds to the curve Xγ in PC4,

Xγ = [(cosh t, sinh t,
√

1 − c2 cos at,
√

1 − c2 sin at, c cos bt, c sin bt)].

Let

G4 =



cosh t sinh t 0 0 0 0
sinh t cosh t 0 0 0 0

0 0 cos at sin at 0 0
0 0 − sin at cos at 0 0
0 0 0 0 cos bt sin bt
0 0 0 0 − sin bt cos bt


,

then G4 is a subgroup of O+(5, 1). The torus spiral Xγ(t) is the orbit of the subgroup O+(5, 1) acting on
the point

p = (1, 0,
√

1 − c2, 0, c, 0) ∈ C5
+.

Thus, the torus spiral in R4 is Möbius homogeneous. □

3. Möbius invariants of curves in R4

In this section, we use the osculating sphere of the curve to construct the Möbius invariants of the
curve in Rn for n = 2, 3, 4. Specifically, we provide clear expressions for these Möbius invariants by
the isometric invariants: curvatures.

Let γ(s) ∈ Rn be a parameter representation of a curve in the Euclidean space Rn, and s its arclength.
If γ′(s) , 0, then the curve γ is called a regular curve.
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Definition 3.1. Let γ1(s), γ2(s) be two parameter curves, s its arclength, and

f (s) = |γ1(s) − γ2(s)|2.

If
f (s0) = 0, f ′(s0) = 0, · · · , f (n)(s0) = 0,

then two curves γ1(s), γ2(s) are called having n-order contact at the point

p = γ1(s0) = γ2(s0).

The osculating sphere of the curve γ at an point p is the round (n − 1)-sphere with n-order contact
with γ at the point p.

An important property of an osculating sphere is that it is Möbius invariant.

Theorem 3.1. Let γ ∈ Rn be a smooth curve, and ϕ ∈ M(Rn). For a point p ∈ γ, if S is the osculating
sphere of γ at p, then ϕ(S ) is the osculating sphere of ϕ(γ) at ϕ(p).

Proof. Since a Möbius transformation ϕ is a diffeomorphism, so it maintain the order of contact
between curves. On the other hand, a Möbius transformation ϕ takes the set of round (n − 1)-spheres
into the set of round (n − 1)-spheres, thus ϕ(S ) is the osculating sphere of ϕ(γ) at ϕ(p). □

3.1. Möbius invariants of curves in R2

Although Möbius invariants of curves in R2 are well-known (see [5]), for completeness, we provide
the deduction process of the Möbius invariants in this section.

Let γ(s) be a smooth regular curve in R2 with s arc length parameter, then there exists the Frenet
frame {α(s), β(s)} along the curve γ(s), and the Frenet formula is as follows:

γ′(s) = α(s), α′(s) = κ(s)β(s), β′(s) = −κ(s)α(s). (3.1)

Next, we consider the curve with κ(s) > 0. It is clear from the definition of osculating sphere that
the radius R(s) and the center a(s) of the osculating sphere of γ(s) are respectively given by

R(s) =
1
κ(s)
, a(s) = γ(s) + R(s)β(s).

Thus, the sphere coordinates of the osculating sphere in R4
1 are by

y(s) =
1

2R(s)

(
2a(s) · γ(s) − |γ(s)|2 + 1, 2a(s) · γ(s) − |γ(s)|2 − 1, 2a(s)

)
.

Thus,
⟨y(s), y(s)⟩ = 1,

and by (3.1) we have

y′(s) =
κ′(s)

2

(
|γ(s)|2 + 1, |γ(s)|2 − 1, 2γ(s)

)
,

y′′(s) =
κ′′(s)

2

(
|γ(s)|2 + 1, |γ(s)|2 − 1, 2γ(s)

)
+ κ′(s)

(
γ(s) · α(s), γ(s) · α(s), α(s)

)
.
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By direct calculation,
⟨y′(s), y′(s)⟩ = 0, ⟨y′′(s), y′′(s)⟩ = κ′(s)2.

When κ′(s) , 0, we can choose a parameter t such that

⟨y′′(t), y′′(t)⟩ = 1.

Next, we assume that κ′(s) > 0, then the relation t = t(s) between the parameter t and the arclength
s is as follows:

dt(s)
ds
= t′(s) =

√
κ′(s). (3.2)

The parameter t is called the Möbius arclength parameter, which is invariant under M(R2) by
Theorem 3.1. Thus, y(t) is a Möbius invariant vector field in R4

1 along the curve γ.

Remark 3.1. The Möbius arclength parameter can be defined when κ′(s) , 0. If

κ′(s) ≡ 0,

then the curve is a circle or straight line. In fact, all circles and straight lines are Möbius equivalent.

Next, we assume that the curve γ(t) satisfies κ′(t) , 0 with the Möbius arclength parameter t. We
define

T1(t) = y(t),
T2(t) = y′(t),
T3(t) = y′′(t),
T4(t) = −y′′′(t) − κcy′(t),

(3.3)

where
κc =

1
2
⟨y′′′(t), y′′′(t)⟩.

We call κc the Möbius curvature of γ. Clearly, the Möbius curvature κc is a Möbius invariants.
By direct computation, we can obtain Table 1.

Table 1. The frame-1.
⟨, ⟩ T1(t) T2(t) T3(t) T4(t)
T1(t) 1 0 0 0
T2(t) 0 0 0 1
T3(t) 0 0 1 0
T4(t) 0 1 0 0

Thus, {T1(t),T2(t),T3(t),T4(t)} is a moving frame in R4
1 along γ(s). By direct computation, we get

the Frenet formula corresponding to the moving frame as follows:
T ′1(t)
T ′2(t)
T ′3(t)
T ′4(t)

 =


0 1 0 0
0 0 1 0
0 −κc 0 −1
−1 0 κc 0




T1(t)
T2(t)
T3(t)
T4(t)

 . (3.4)

According to the well-known moving frame theory, we have the following results:
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Theorem 3.2. Let γ1(t), γ2(t) be two parameter curves inR2, and t its Möbius arclength, If their Möbius
curvature

κc1(t) = κc2(t),

then γ1(t), γ2(t) are Möbius equivalent.

Thus, the Möbius arclength and the Möbius curvature of a regular curve in R2 are complete Möbius
invariants of the curve. By isometric invariant: curvature κ(s) and arclength parameter s, the Möbius
curvature can be given by

κc(s) =
1

2κ′(s)

[1
4

(ln |κ′(s)|)
′2
s − (ln |κ′(s)|)

′′

s + κ
2(s)

]
. (3.5)

3.2. Möbius invariants of curves in R3

Although Möbius invariants of curves in R3 are well-known (see [5, 8]), for completeness, we
provide the deduction process of the Möbius invariants in this section.

Let γ(s) be a smooth regular curve in R3 with an s arc length parameter. Then there exists the Frenet
frame {α(s),N(s), β(s)} along the curve γ(s), and the Frenet formula is as follows:

γ′(s) = α(s),
α′(s) = κ(s)N(s),
N′(s) = −κ(s)α(s) + τ(s)β(s),
β′(s) = −τ(s)N(s),

(3.6)

where κ(s), τ(s) are the curvature and torsion of γ(s), respectively.
Next, we assume that κ(s) > 0, τ(s) , 0, where τ(s) , 0 means that the curve cannot be contained

in any two-dimensional affine subspace, and let

R(s) =
1
κ(s)
.

It follows from the definition of an osculating sphere that the radius r(s) and the center a(s) of the
osculating sphere of γ(s) are respectively given by

r(s) =

√
R(s)2 +

(R′(s)
τ(s)

)2
, a(s) = γ(s) + R(s)N(s) +

R′(s)
τ(s)
β(s).

Thus, the sphere coordinates of the osculating sphere R5
1 are by

y(s) =
1

2r(s)

(
2a(s) · γ(s) − |γ(s)|2 + 1, 2a(s) · γ(s) − |γ(s)|2 − 1, 2a(s)

)
.

Thus,
⟨y(s), y(s)⟩ = 1,

and by (3.6) we have

y′(s) =
1

2r(s)

(
2A(s)γ(s) · β(s), 2A(s)γ(s) · β(s), 2A(s)β(s)

)
+

( 1
2r(s)

)′
2r(s)y(s),

AIMS Mathematics Volume 9, Issue 8, 23027–23046.



23038

where
A(s) = R(s)τ(s) +

(R′(s)
τ(s)

)′
.

By direct calculation,

⟨y′(s), y′(s)⟩ =
R(s)2A(s)2

r(s)4 .

If
R(s)2A(s)2

r(s)4 = 0,

then τ(s) = 0 or A(s) = 0.
When τ(s) = 0 for every s ∈ [s1, s2], then γ(s) is a plane curve in this segment.
When A(s) = 0 for every s ∈ [s1, s2], then γ(s) lays on a 2-dimensional sphere in this segment, and

up to a Möbius transformation, it will turn a plane curve.
Now we assume that τ(s) , 0, A(s) , 0 along the curve γ(s). We can choose a parameter t such that

⟨y′(t), y′(t)⟩ = 1.

In fact, the relation t = t(s) between the parameter t and the arclength s is as follows:

dt(s)
ds
= t′(s) =

R(s)A(s)
r(s)2 . (3.7)

The parameter t is called the Möbius arclength parameter of the curve γ, which is invariant under the
Möbius transformation of R3 by Theorem 3.1. Thus, y(t) is a Möbius invariant vector field in R5

1 along
the curve γ.

Next, we construct a moving frame in R5
1 along the curve γ(t). Let γ(t) be the regular curve, where

t is the Möbius arclength parameter. We define

T1(t) = y(t),
T2(t) = y′(t),
T3(t) = y′′(t) + y(t),

T4(t) =
1
κc

T ′3(t),

T5(t) =
−1
κc

T ′4(t) +
τc

κc
T3(t),

(3.8)

where

κc(t) =
√
⟨T ′3(t),T ′3(t)⟩, τc(t) =

−⟨T ′4(t),T ′4(t)⟩
2κc(t)

. (3.9)

By direct computation, we can obtain Table 2.

Table 2. The frame-2.
⟨, ⟩ T1(t) T2(t) T3(t) T4(t) T5(t)
T1(t) 1 0 0 0 0
T2(t) 0 1 0 0 0
T3(t) 0 0 0 0 1
T4(t) 0 0 0 1 0
T5(t) 0 0 1 0 0
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Thus, {T1(t),T2(t),T3(t),T4(t),T5(t)} is a moving frame in R5
1 along γ(t). By direct computation, we

get the Frenet formula corresponding to the moving frame as follows:
T ′1(t)
T ′2(t)
T ′3(t)
T ′4(t)
T ′5(t)


=


0 1 0 0 0
−1 0 1 0 0
0 0 0 κc 0
0 0 τc 0 −κc
0 −1 0 −τc 0




T1(t)
T2(t)
T3(t)
T4(t)
T5(t)


. (3.10)

Since the moving frame {T1(t),T2(t),T3(t),T4(t),T5(t)} is invariant under the Möbius transformation of
R3, from the Frenet formula (3.10) and the well-known moving frame theory, we have the results.

Theorem 3.3. In (3.9), κc and τc are two Möbius invariants of the curve γ, which are called the Möbius
curvature and Möbius torsion of the curve γ, respectively.

Theorem 3.4. Let γ1(t), γ2(t) be two parameter curves inR3, and t its Möbius arclength, If their Möbius
curvature κc1(t) = κc2(t) and the Möbius torsion

τc1(t) = τc2(t),

then γ1(t), γ2(t) are Möbius equivalent.

Thus, the Möbius arclength, the Möbius curvature, and the Möbius torsion of a regular curve in R3

are complete Möbius invariants of the curve. By isometric invariant: curvatures κ(s), τ(s) and arclength
parameter s, the Möbius curvature κc and the Möbius torsion τc can be given by, respectively,

κc(s) =
τ(s)r(s)5

R(s)4A(s)2 ,

τc(s) =
−R(s)2

2τ(s)r(s)

[(
ln

( τ(s)r(s)3

R(s)3A(s)

))′2
s
+

1
R(s)2 − 2

(
ln

( τ(s)r(s)3

R(s)3A(s)

))′′
s

]
.

(3.11)

In Eq (3.11), we can assume that τ(s) > 0, since τ(s) , 0 along the curve γ.

3.3. Möbius invariants of curves in R4

Let γ(s) be a smooth regular curve in R4 with s arc length parameter. We assume that the curve is
not contained in any three-dimensional affine subspace. Let α(s),N(s), β(s), δ(s) be the Frenet frame,
then the Frenent formula is given by

α′(s)
N′(s)
β′(s)
δ′(s)

 =


0 κ1(s) 0 0
−κ1(s) 0 κ2(s) 0

0 −κ2(s) 0 κ3(s)
0 0 −κ3(s) 0



α(s)
N(s)
β(s)
δ(s)

 . (3.12)

The functions κ1(s), κ2(s), κ3(s) are respectively the first, second, third curvatures of the curve γ(s).
Since the curve γ(s) is not contained in any three-dimensional affine subspace, we can assume that
κ1(s) > 0, κ2(s) > 0, κ3(s) > 0.
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It follows from the definition of an osculating sphere that the radius r(s) and the center a(s) of the
osculating sphere R4 of γ(s) are respectively given by

r(s) =

√
R(s)2 +

(R′(s)
κ2(s)

)2
+ A1(s)2,

a(s) = γ(s) + R(s)N(s) +
R′(s)
κ2(s)

β(s) + A1(s)δ(s),

where

R(s) =
1
κ1(s)

, A1(s) =
R′′(s)
κ2(s)κ3(s)

+
R(s)κ2(s)
κ3(s)

−
R′(s)κ′2(s)
κ2(s)2κ3(s)

.

Thus, the sphere coordinates of the osculating sphere R6
1 are by

y(s) =
1

2r(s)

(
2a(s) · γ(s) − |γ(s)|2 + 1, 2a(s) · γ(s) − |γ(s)|2 − 1, 2a(s)

)
,

Thus,
⟨y(s), y(s)⟩ = 1,

and by (3.12) we have

y′(s) =
1

r(s)

(
A(s)γ(s) · δ(s), A(s)γ(s) · δ(s), A(s)δ(s)

)
−

A(s)A1(s)
r(s)2 y(s),

where

A(s) =
R′(s)κ3(s)
κ2(s)

+ A′1(s), B(s) =

√
R(s)2 +

(R′(s)
κ2(s)

)2
.

By direct calculation, we have the following equation,

⟨y′(s), y′(s)⟩ =
A(s)2B(s)2

r(s)4 .

When A(s) = 0 for every s ∈ [s1, s2], then γ(s) lays on a 3-dimensional sphere in this segment, up
to a Möbius transformation, γ(s) is contained in some three-dimensional affine subspace. Thus, we can
assume that A(s) > 0 along the curve γ. We can choose a parameter t such that

⟨y′(t), y′(t)⟩ = 1.

In fact, the relation t = t(s) between the parameter t and the arclength s is as follows:

dt(s)
ds
= t′(s) =

A(s)B(s)
r(s)2 . (3.13)

The parameter t is called the Möbius arclength parameter, which is invariant under the Möbius
transformation group of R4 by Theorem 3.1. Thus y(t) is a Möbius invariant vector field in R6

1 along
the curve γ(s).
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Next, we construct a moving frame in R6
1 along the curve γ. Let γ(t) be the regular curve, where t is

the Möbius arclength parameter. We define

T1(t) = y(t),
T2(t) = y′(t),

T3(t) =
1
κc(t)

(y′′(t) + y(t)),

T4(t) = T ′3(t) + κc(t)y′(t),

T5(t) =
1
νc(t)

T ′4(t),

T6(t) =
−1
νc(t)

T ′5(t) +
µc(t)
νc(t)

T4(t),

(3.14)

where

κc(t) =
√
⟨T ′2(t) + T1(t),T ′2(t) + T1(t)⟩,

νc(t) =
√
⟨T ′4(t),T ′4(t)⟩,

µc(t) =
−⟨T ′5(t),T ′5(t)⟩

2νc(t)
.

(3.15)

By direct computation, we can obtain Table 3.

Table 3. The frame-3.
⟨, ⟩ T1(t) T2(t) T3(t) T4(t) T5(t) T6(t)
T1(t) 1 0 0 0 0 0
T2(t) 0 1 0 0 0 0
T3(t) 0 0 1 0 0 0
T4(t) 0 0 0 0 0 1
T5(t) 0 0 0 0 1 0
T6(t) 0 0 0 1 0 0

Thus, {T1(t),T2(t),T3(t),T4(t),T5(t),T6(t)} is a moving frame in R6
1 along γ(t). By direct

computation, we get the Frenet formula corresponding to the moving frame as follows:

T ′1(t)
T ′2(t)
T ′3(t)
T ′4(t)
T ′5(t)
T ′6(t)


=



0 1 0 0 0 0
−1 0 κc(t) 0 0 0
0 −κc(t) 0 1 0 0
0 0 0 0 νc(t) 0
0 0 0 µc(t) 0 −νc(t)
0 0 −1 0 −µc(t) 0





T1(t)
T2(t)
T3(t)
T4(t)
T5(t)
T6(t)


. (3.16)

Since the moving frame {T1(t),T2(t),T3(t),T4(t),T5(t),T6(t)} is invariant under the Möbius
transformation of R4, from the Frenet formula (3.16) and the well-known moving frame theory, we
have the results:
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Theorem 3.5. In (3.15), κc(t), νc(t), µc(t) are three Möbius invariants, which are called the first
Möbius curvature, the second Möbius curvature and the third Möbius curvature of the curve γ in R4,
respectively.

Theorem 3.6. Let γ1(t), γ2(t) be two regular curves in R4, and t its Möbius arclength, If their the first,
the second and the third Möbius curvature

κc1(t) = κc2(t), νc1(t) = νc2(t), µc1(t) = µc2(t),

then γ1(t), γ2(t) are Möbius equivalent.

Thus, the Möbius arclength, the first, the second, and the third Möbius curvature of a regular curve
in R4 are complete Möbius invariants of the curve. By isometric invariant: curvatures κ1(s), κ2(s), κ3(s)
and arclength parameter s, the first, the second, and the third Möbius curvature can be given by,
respectively,

κc(s) =
κ3(s)r(s)3R(s)

A(s)B(s)3 ,

νc(s) =
κ2(s)r(s)4

A(s)2B(s)R(s)2 ,

µc(s) =
−R(s)2

2B(s)κ2(s)

[(
ln

(A(s)R(s)2

κ2(s)r(s)2

))′2
s
+

1
R(s)2 + 2

(
ln

(A(s)R(s)2

κ2(s)r(s)2

))′′
s

]
.

(3.17)

4. The proof of Theorem 1.2.

Let γ: I → R4 be a Möbius homogeneous regular curve in R4. Since the Möbius homogeneous
curve γ is an orbit of a subgroup of the Möbius transformation group of R4, then for any two point
s1, s2 ∈ I, there exists a Möbius transformation ϕ ∈ M(R4) such that

γ(s1) = ϕ(γ(s2)), γ(I) = ϕ(γ(I)).

If there is a point γ(s0) such that γ′(s0) = 0, then γ′(s) ≡ 0 for all s ∈ I, and the curve is a point. In
this paper, we do not consider this trivial case. So we can assume that γ′(s) , 0 for all s ∈ I, that is the
Möbius homogeneous curve is a regular curve.

We divide the proof into three cases:

Case 1. The curve γ is contained in some two-dimensional affine subspace.
Case 2. The curve γ is contained in some three-dimensional affine subspace, but the curve γ is not
contained in any two-dimensional affine subspace.
Case 3. The curve γ is not contained in any three-dimensional affine subspace.

Now we consider Case 1. Since the curve γ is contained in some two-dimensional affine subspace,
we can assume that the curve γ is a planar curve, that is, γ: I → R2.

If the curvature κ′(s) ≡ 0, then the curve γ(s) is a circle or a straight line.
If the curvature κ′(s) , 0 then the Möbius curvature κc(t) can be defined. Since conformal curvature

κc(t) is a Möbius invariant, it is a constant.
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By direct computation, the conformal curvature κc(t) of the logarithmic spiral

γ(t) = eat(cos bt, sin bt)

in R2 is

κc(t) =
b2 − a2

2ab
.

Since the constants a, b are arbitrary, by Theorem 3.2, we know that the Möbius homogeneous curve
is Möbius equivalent to the logarithmic spiral. Thus, we have the following results.

Proposition 4.1. Let γ: I → R2 be a Möbius homogeneous curve in R2, then the curve is Möbius
equivalent to a circle, a straight line, or a logarithmic spiral.

Now we consider Case 2. Since the curve γ is contained in some three-dimensional affine subspace
and is not contained in any two-dimensional affine subspace. Thus, we can assume that the curve γ:
I → R3 and

τ(s) , 0, A(s) , 0

along the curve γ(s). And the Möbius curvature κc(t) and the Möbius torsion τc(t) can be defined.
Since the curve γ is Möbius homogeneous, the Möbius curvature κc(t) and the Möbius torsion τc(t)

are constant. Thus, τc
κc

is a constant.
If

τc

κc
>
−1
2
,

we consider the space cylinder spiral

γ : R→ R3, γ(t) = eat(c cos bt, c sin bt,
√

1 − c2), a > 0, b > 1, c =
a
b

√
b2 − 1
a2 + 1

,

which is a Möbius homogeneous curve in R3.
By direct computation, we obtain the Möbius curvature κc(t) and the Möbius torsion of the space

cylinder spiral, respectively,

κc =
√

(b2 − 1)(a2 + 1), τc =
a2 − b2 + 1

2
√

(b2 − 1)(a2 + 1)
.

Clearly, we have
τc

κc
>
−1
2
.

Since the constants a, b are arbitrary, thus the curve γ is Möbius equivalent to the space cylinder spiral.
If

τc

κc
<
−1
2
,

we consider the ring curve
γ = σ−1 ◦ γ̃,

here, the curve γ̃ is a ring-curve in S3

γ̃ : R→ S3, γ̃(t) = (c cos at, c sin at,
√

1 − c2 cos bt,
√

1 − c2 sin bt),
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where a > 1, 0 < b < 1 and

c = b

√
a2 − 1
a2 − b2 .

In fact, the ring curve γ̃ is a homogeneous curve in S3.
By direct computation, we obtain the Möbius curvature κc(t) and the Möbius torsion of the ring-

curve σ−1 ◦ γ̃, respectively,

κc =
√

(a2 − 1)(1 − b2), τc =
1 − a2 − b2

2
√

(a2 − 1)(1 − b2)
.

Clearly, we have
τc

κc
>
−1
2
.

Since the constants a and b are arbitrary, the curve is Möbius equivalent to the ring curve σ−1 ◦ γ̃.
If

τc

κc
=
−1
2
,

we consider the cylindric spiral γ: R→ R3,

γ(t) = (a cos
√

1 + a2t, a sin
√

1 + a2t, t), a > 0.

which is an isometric homogeneous curve in R3.
By direct computation, we obtain the Möbius curvature κc(t) and the Möbius torsion of the cylindric

spiral, respectively

κc = a, τc =
−a
2
.

Clearly, we have
τc

κc
=
−1
2
,

thus, the curve is Möbius equivalent to the cylindric spiral.
Thus, we have the following results:

Proposition 4.2. Let γ: I → R3 be a Möbius homogeneous curve in R3, which is not contained in
any two-dimensional affine subspace, then the curve is Möbius equivalent to a space cylinder spiral, a
cylinder spiral, or the ring curve.

Finally, we consider Case 3. Since the curve γ is not contained in any three-dimensional affine
subspace, we can assume that κ1(s) > 0, κ2(s) > 0, κ3(s) > 0 and A(s) , 0 along the curve γ(s). And
the Möbius curvatures κc(t), νc(t), µc(t) can be defined.

Since the curve γ is Möbius homogeneous, the Möbius curvatures κc(t), νc(t), µc(t) are constant, and
κc > 0, νc > 0.

By direct computation, we obtain the Möbius curvatures κc(t), νc(t), µc(t) of the torus spiral

γ(t) = et(
√

1 − c2 cos at,
√

1 − c2 sin at, c cos bt, c sin bt), a > 0, b > 0, 0 < c < 1,
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are constants, which are given by

κc =
(a2 − b2)(a2 + 1)(b2 + 1)c

√
1 − c2

abα
√
α

,

νc =
[
(a2 + 1)(b2 + 1)β − α2a2b2

] 3
2 1
α3a2b2 ,

µc =
α − β

2
[
(a2 + 1)(b2 + 1)β − α2a2b2

] 1
2

,

(4.1)

where
α = a2(1 − c2) + b2c2 + 1, w β = a2(a2 + 1)(1 − c2) + b2(b2 + 1)c2.

Since for any constants κc > 0, νc > 0, µc, we can choose the constants a > 0, b > 0, 0 < c < 1
satisfying the Eq (4.1), thus the curve γ is Möbius equivalent to a torus spiral.

Proposition 4.3. Let γ: I → R4 be a Möbius homogeneous curve in R4, which is not contained in any
three-dimensional affine subspace, then the curve is Möbius equivalent to a torus spiral.

Combining Propositions 4.1–4.3, we finish the proof of our main Theorem 1.2.

5. Conclusions

In this paper, we construct a complete system of Möbius invariants for regular curves in R4 by the
isometric invariants. Secondly, we completely classify the Möbius homogeneous curves in R4 up to a
Möbius transformation of R4.
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