Research article Special Issues

Some zero product preserving additive mappings of operator algebras

  • Received: 08 May 2024 Revised: 25 June 2024 Accepted: 03 July 2024 Published: 16 July 2024
  • MSC : 46L57, 47B47, 47C15

  • Let $ \mathcal{M} $ be a von Neumann algebra without direct commutative summands, and let $ \mathcal{A} $ be an arbitrary subalgebra of $ LS(\mathcal{M}) $ containing $ \mathcal{M}, $ where $ LS(\mathcal{M}) $ is the $ ^{\ast} $-algebra of all locally measurable operators with respect to $ \mathcal{M} $. Suppose $ \delta $ is an additive mapping from $ \mathcal{A} $ to $ LS(\mathcal{M}) $ that satisfies the condition $ \delta(A)B^{\ast}+A\delta(B)+\delta(B)A^{\ast}+B\delta(A) = 0 $ whenever $ AB = BA = 0. $ In this paper, we prove that there exists an element $ Y $ in $ LS(\mathcal{M}) $ such that $ \delta(X) = XY-YX^{\ast}, $ for every $ X $ in $ \mathcal{A}. $

    Citation: Wenbo Huang, Jiankui Li, Shaoze Pan. Some zero product preserving additive mappings of operator algebras[J]. AIMS Mathematics, 2024, 9(8): 22213-22224. doi: 10.3934/math.20241080

    Related Papers:

  • Let $ \mathcal{M} $ be a von Neumann algebra without direct commutative summands, and let $ \mathcal{A} $ be an arbitrary subalgebra of $ LS(\mathcal{M}) $ containing $ \mathcal{M}, $ where $ LS(\mathcal{M}) $ is the $ ^{\ast} $-algebra of all locally measurable operators with respect to $ \mathcal{M} $. Suppose $ \delta $ is an additive mapping from $ \mathcal{A} $ to $ LS(\mathcal{M}) $ that satisfies the condition $ \delta(A)B^{\ast}+A\delta(B)+\delta(B)A^{\ast}+B\delta(A) = 0 $ whenever $ AB = BA = 0. $ In this paper, we prove that there exists an element $ Y $ in $ LS(\mathcal{M}) $ such that $ \delta(X) = XY-YX^{\ast}, $ for every $ X $ in $ \mathcal{A}. $



    加载中


    [1] S. Albeverio, S. Ayupov, K. Kudaydergenov, Structure of derivations on various algebras of measurable operators for type I von Neumann algebras, J. Funct. Anal., 256 (2009), 2917–2943. https://doi.org/10.1016/j.jfa.2008.11.003 doi: 10.1016/j.jfa.2008.11.003
    [2] B. Blackadar, Operator algebras: Theory of $C^{*}$-algebras and von Neumann algebras, Berlin: Springer-Verlag, 2006. https://doi.org/10.1007/3-540-28517-2
    [3] M. Brešar, J. Vukman, On some additive mappings in rings with involution, Aeq. Math., 38 (1989), 178–185. https://doi.org/10.1007/BF01840003 doi: 10.1007/BF01840003
    [4] R. Kadison, J. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, American Mathematical Society, 1997.
    [5] M. Muratov, V. Chilin, Topological algebras of measurable and locally measurable operators, J. Math. Sci., 239 (2019), 654–705. https://doi.org/10.1007/s10958-019-04320-y doi: 10.1007/s10958-019-04320-y
    [6] T. Palmer, Banach algebras and the general theory of $\ast$-algebras. Vol. II, Cambridge: Cambridge University Press, 2001.
    [7] G. K. Pedersen, $C^{*}$-algebras and their automorphism groups, London: Academic Press, 2018. https://doi.org/10.1016/C2016-0-03431-9
    [8] X. Qi, F. Zhang, Multiplicative Jordan $^{\ast}$-derivations on rings with involution, Linear Multilinear A., 64 (2016), 1145–1162. https://doi.org/10.1080/03081087.2015.1073217 doi: 10.1080/03081087.2015.1073217
    [9] X. Qi, M. Wang, Local characterization of Jordan $^{\ast}$-derivations on $\mathcal{B}(\mathcal{H})$, Publ. Math. Debrecen, 94 (2019), 421–434.
    [10] P. Šemrl, Quadratic functionals and Jordan $^{\ast}$-derivations, Studia Math., 97 (1991), 157–165.
    [11] P. Šemrl, Jordan $^{\ast}$-derivations of standard operator algebras, Proc. Amer. Math. Soc., 120 (1994), 515–518. https://doi.org/10.2307/2159889 doi: 10.2307/2159889
    [12] J. Vukman, Some functional equations in Banach algebras and an application, Proc. Amer. Math. Soc., 100 (1987), 133–136. https://doi.org/10.1090/S0002-9939-1987-0883415-0 doi: 10.1090/S0002-9939-1987-0883415-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(451) PDF downloads(36) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog