Research article Special Issues

A differential equation approach for solving implicit state-dependent convex sweeping processes in Banach spaces

  • Received: 13 September 2023 Revised: 10 December 2023 Accepted: 11 December 2023 Published: 20 December 2023
  • MSC : 34A60, 49J53

  • In the setting of $ 2 $-uniformly convex Banach spaces, we prove the existence of solutions for a variant of the implicit state-dependent convex sweeping processes. Our approach is based on a differential equation associated with the generalized projection operator.

    Citation: Messaoud Bounkhel, Bushra R. Al-sinan. A differential equation approach for solving implicit state-dependent convex sweeping processes in Banach spaces[J]. AIMS Mathematics, 2024, 9(1): 2123-2136. doi: 10.3934/math.2024106

    Related Papers:

  • In the setting of $ 2 $-uniformly convex Banach spaces, we prove the existence of solutions for a variant of the implicit state-dependent convex sweeping processes. Our approach is based on a differential equation associated with the generalized projection operator.



    加载中


    [1] A. Jourani, E. Vilches, A differential equation approach to implicit sweeping processes, J. Differ. Equations, 266 (2019), 5168–5184. https://doi.org/10.1016/j.jde.2018.10.024 doi: 10.1016/j.jde.2018.10.024
    [2] M. Bounkhel, Implicit differential inclusions in reflexive smooth Banach spaces, Proc. Amer. Math. Soc., 140 (2012), 2767–2782. https://doi.org/10.1090/S0002-9939-2011-11122-5 doi: 10.1090/S0002-9939-2011-11122-5
    [3] G. Wenzel, On a class of implicit differential inclusions, J. Differ. Equations, 63 (1986), 162–182. https://doi.org/10.1016/0022-0396(86)90046-X doi: 10.1016/0022-0396(86)90046-X
    [4] Z. Ding, On a class of implicit differential inclusions, Proc. Amer. Math. Soc., 124 (1996), 745–749.
    [5] Y. Alber, I. Ryazantseva, Nonlinear Ill-posed problems of monotone type, Springer Dordrecht, 2006. https://doi.org/10.1007/1-4020-4396-1
    [6] R. Deville, G. Godefroy, V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow, UK, 1993.
    [7] K. Ball, E. A. Carlen, E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math., 115 (1994), 463–482. https://doi.org/10.1007/BF01231769 doi: 10.1007/BF01231769
    [8] W. Takahashi, Nonlinear functional analysis, Yokohama Publishers, 2000.
    [9] Y. Alber, Generalized projection operators in Banach spaces: properties and applications, Funct. Differ. Equ., 1 (1994), 1–21.
    [10] M. Bounkhel, M. Bachar, Generalised-prox-regularity in reflexive smooth Banach spaces with smooth dual norm, J. Math. Anal. Appl., 475 (2019), 699–729. https://doi.org/10.1016/j.jmaa.2019.02.064 doi: 10.1016/j.jmaa.2019.02.064
    [11] J. Gwinner, B. Jadamba, A. A. Khan, F. Raciti, Uncertainty quantification in variational inequalities, 1 Ed., New York: Chapman and Hall/CRC, 2021. https://doi.org/10.1201/9781315228969
    [12] A. A. Khan, J. Li, S. Reich, Generalized projections on general Banach spaces, J. Nonlinear Convex Anal., 24 (2023), 1079–1112.
    [13] G. Dinca, On the Kuratowski measure of noncompactness for duality mappings, Topol. Method. Nonlinear Anal., J. Juliusz Schauder Univ. Cent., 40 (2012), 181–187.
    [14] G. Dinca, Duality mappings on infinite dimensional reflexive and smooth Banach spaces are not compact, Bull. Acad. R. Belg., 15 (2004), 33–40.
    [15] J. M. Ayerbe Toledano, T. Dominguez Benavides, G. López Acedo, Measures of noncompactness in metric fixed point theory, Birkhäuser Basel, 1997. https://doi.org/10.1007/978-3-0348-8920-9
    [16] M. Furi, M. Martelli, A. Vignoli, Contributions to the spectral theory of nonlinear operators in Banach spaces, Ann. Mat. Pura Appl., 118 (1978), 229–294. https://doi.org/10.1007/BF02415132 doi: 10.1007/BF02415132
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(788) PDF downloads(58) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog