Research article

A modified Moore-Gibson-Thompson fractional model for mass diffusion and thermal behavior in an infinite elastic medium with a cylindrical cavity

  • Received: 18 May 2024 Revised: 28 June 2024 Accepted: 03 July 2024 Published: 10 July 2024
  • MSC : 74F05, 74F10, 74F15

  • This article discussed a new fractional model that included governing equations describing mass and thermal diffusion in elastic materials. We formulated the thermal and mass diffusion equations using the Atangana-Baleanu-Caputo (ABC) fractional derivative and the Moore-Gibson-Thomson (MGT) equation. In addition to the fractional operators, this improvement included incorporating temperature and diffusion relaxation periods into the Green and Naghdi model (GN-Ⅲ). To verify the proposed model and analyze the effects of the interaction between temperature and mass diffusion, an infinite thermoelastic medium with a cylindrical hole was considered. We analyzed the problem under boundary conditions where the concentration remained constant, the temperature fluctuated and decreased, and the surrounding cavity was free from any external forces. We applied Laplace transform techniques and Mathematica software to generate calculations and numerical results for various field variables. We then compared the obtained results with those from previous relevant models. We have graphically depicted the results and extensively examined and evaluated them to understand the effects of the relationship between temperature and mass diffusion in the system.

    Citation: Yazeed Alhassan, Mohammed Alsubhi, Ahmed E. Abouelregal. A modified Moore-Gibson-Thompson fractional model for mass diffusion and thermal behavior in an infinite elastic medium with a cylindrical cavity[J]. AIMS Mathematics, 2024, 9(8): 21860-21889. doi: 10.3934/math.20241063

    Related Papers:

  • This article discussed a new fractional model that included governing equations describing mass and thermal diffusion in elastic materials. We formulated the thermal and mass diffusion equations using the Atangana-Baleanu-Caputo (ABC) fractional derivative and the Moore-Gibson-Thomson (MGT) equation. In addition to the fractional operators, this improvement included incorporating temperature and diffusion relaxation periods into the Green and Naghdi model (GN-Ⅲ). To verify the proposed model and analyze the effects of the interaction between temperature and mass diffusion, an infinite thermoelastic medium with a cylindrical hole was considered. We analyzed the problem under boundary conditions where the concentration remained constant, the temperature fluctuated and decreased, and the surrounding cavity was free from any external forces. We applied Laplace transform techniques and Mathematica software to generate calculations and numerical results for various field variables. We then compared the obtained results with those from previous relevant models. We have graphically depicted the results and extensively examined and evaluated them to understand the effects of the relationship between temperature and mass diffusion in the system.



    加载中


    [1] I. N. Sneddon, The linear theory of thermoelasticity, Wien CISM Udine: Springer-Verlag, 1974.
    [2] W. A. Day, Heat conduction within linear thermoelasticity, Springer, 2013.
    [3] J. Ba, T. Han, L. Fu, Z. Wang, Review of thermoelasticity theory in rocks and its applications in geophysics, Rev. Geoph. Planet. Phys., 52 (2021), 623–633. https://doi.org/10.19975/j.dqyxx.2021-009 doi: 10.19975/j.dqyxx.2021-009
    [4] V. D. Kupradze, Three-dimensional problems of elasticity and thermoelasticity, Elsevier, 2012.
    [5] M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27 (1956), 240–253. https://doi.org/10.1063/1.1722351 doi: 10.1063/1.1722351
    [6] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299–309. https://doi.org/10.1016/0022-5096(67)90024-5 doi: 10.1016/0022-5096(67)90024-5
    [7] A. E. Green, K. Lindsay, Thermoelasticity, J. Elasticity, 2 (1972), 1–7. https://doi.org/10.1007/BF00045689 doi: 10.1007/BF00045689
    [8] A. E. Green, P. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Roy. Soc. A Math. Phys. Sci., 432 (1991), 171–194. https://doi.org/10.1098/rspa.1991.0012 doi: 10.1098/rspa.1991.0012
    [9] A. E. Green, P. Naghdi, On undamped heat waves in an elastic solid, J. Therm. Stress., 15 (1992), 253–264. https://doi.org/10.1080/01495739208946136 doi: 10.1080/01495739208946136
    [10] A. E. Green, P. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189–208. https://doi.org/10.1007/BF00044969 doi: 10.1007/BF00044969
    [11] F. Dell'Oro, I. Lasiecka, V. Pata, A note on the Moore-Gibson-Thompson equation with memory of type Ⅱ, J. Evol. Equ., 20 (2020), 1251–1268. https://doi.org/10.1007/s00028-019-00554-0 doi: 10.1007/s00028-019-00554-0
    [12] R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 24 (2019), 4020–4031. https://doi.org/10.1177/1081286519862007 doi: 10.1177/1081286519862007
    [13] R. Quintanilla, Moore-Gibson-Thompson thermoelasticity with two temperatures, Appl. Eng. Sci., 1 (2020), 100006. https://doi.org/10.1016/j.apples.2020.100006 doi: 10.1016/j.apples.2020.100006
    [14] N. Bazarra, J. R. Fernández, R. Quintanilla, Analysis of a Moore-Gibson-Thompson thermoelastic problem, J. Comput. Appl Math., 382 (2021), 113058. https://doi.org/10.1016/j.cam.2020.113058 doi: 10.1016/j.cam.2020.113058
    [15] A. E. Abouelregal, M. Marin, H. Altenbach, Thermally stressed thermoelectric microbeam supported by Winkler foundation via the modified Moore-Gibson-Thompson thermoelasticity theory, Z. Angew. J. Appl. Math. Mech., 103 (2023), e202300079. https://doi.org/10.1002/zamm.202300079 doi: 10.1002/zamm.202300079
    [16] S. Gupta, S. Das, R. Dutta, Peltier and Seebeck effects on a nonlocal couple stress double porous thermoelastic diffusive material under memory-dependent Moore-Gibson-Thompson theory, Mech. Adv. Mat. Struct., 30 (2023), 449–472. https://doi.org/10.1080/15376494.2021.2017525 doi: 10.1080/15376494.2021.2017525
    [17] A. E. Abouelregal, M. A. Fahmy, Generalized Moore‐Gibson‐Thompson thermoelastic fractional derivative model without singular kernels for an infinite orthotropic thermoelastic body with temperature‐dependent properties, Z. Angew. J. Appl. Math. Mech., 102 (2022), e202100533. https://doi.org/10.1002/zamm.202100533 doi: 10.1002/zamm.202100533
    [18] R. V. Singh, S. Mukhopadhyay, Study of wave propagation in an infinite solid due to a line heat source under Moore-Gibson-Thompson thermoelasticity, Acta Mech., 232 (2021), 4747–4760. https://doi.org/10.1007/s00707-021-03073-7 doi: 10.1007/s00707-021-03073-7
    [19] L. Sun, Q. Zhang, Z. Chen, X. Wei, A singular boundary method for transient coupled dynamic thermoelastic analysis, Comput. Math. Appl., 158 (2024), 259–274. https://doi.org/10.1016/j.camwa.2024.02.017 doi: 10.1016/j.camwa.2024.02.017
    [20] S. A. Davydov, A. V. Zemskov, Thermoelastic diffusion phase-lag model for a layer with internal heat and mass sources, Int. J. Heat Mass Trans., 183 (2022), 122213. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122213 doi: 10.1016/j.ijheatmasstransfer.2021.122213
    [21] A. E. Abouelregal, H. M. Sedighi, A new insight into the interaction of thermoelasticity with mass diffusion for a half-space in the context of Moore-Gibson-Thompson thermodiffusion theory, Appl. Phys. A, 127 (2021), 582. https://doi.org/10.1007/s00339-021-04725-0 doi: 10.1007/s00339-021-04725-0
    [22] A. R. Allnatt, A. V. Chadwick, Thermal diffusion in crystalline solids, Chem. Rev., 67 (1967), 681–705. https://doi.org/10.1021/cr60250a005 doi: 10.1021/cr60250a005
    [23] Y. Abebe, T. Birhanu, L. Demeyu, M. Taye, M. Bekele, Y. Bassie, Thermally activated diffusion of impurities along a semiconductor layer, Eur. Phys. J. B, 95 (2022), 9. https://doi.org/10.1140/epjb/s10051-021-00265-x doi: 10.1140/epjb/s10051-021-00265-x
    [24] J. T. Bauer, X. Montero, M. C. Galetz, Fast heat treatment methods for al slurry diffusion coatings on alloy 800 prepared in air, Surf. Coat. Technol., 381 (2020), 125140. https://doi.org/10.1016/j.surfcoat.2019.125140 doi: 10.1016/j.surfcoat.2019.125140
    [25] W. Nowacki, Dynamic problems of diffusion in solids, Eng. Fract. Mech., 8 (1976), 261–266. https://doi.org/10.1016/0013-7944(76)90091-6 doi: 10.1016/0013-7944(76)90091-6
    [26] H. H. Sherief, F. A. Hamza, H. A. Saleh, The theory of generalized thermoelastic diffusion, Int. J. Eng. Sci., 42 (2004), 591–608. https://doi.org/10.1016/j.ijengsci.2003.05.001 doi: 10.1016/j.ijengsci.2003.05.001
    [27] C. Cattaneo, Sur une forme de l'equation de la chaleur eliminant la paradoxe d'une propagation instantantee, Compt. Rend., 247 (1958), 431–433.
    [28] P. Vernotte, Les paradoxes de la theorie continue de l'equation de la chaleur, Compt. Rend., 246 (1958), 3154.
    [29] A. E. Abouelregal, Generalized mathematical novel model of thermoelastic diffusion with four phase lags and higher-order time derivative, Eur. Phys. J. Plus, 135 (2020), 263. https://doi.org/10.1140/epjp/s13360-020-00282-2 doi: 10.1140/epjp/s13360-020-00282-2
    [30] N. A. Shah, I. Ahmad, O. Bazighifan, A. E. Abouelregal, H. Ahmad, Multistage optimal homotopy asymptotic method for the nonlinear Riccati ordinary differential equation in nonlinear physics, Appl. Math., 14 (2020), 1009–1016. http://dx.doi.org/10.18576/amis/140608 doi: 10.18576/amis/140608
    [31] A. E. Abouelregal, H. Ahmad, A. M. Yahya, A. Saidi, H. Alfadil, Generalized thermoelastic responses in an infinite solid cylinder under the thermoelastic-diffusion model with four lags, Chin. J. Phys., 76 (2022), 121–134. https://doi.org/10.1016/j.cjph.2021.08.015 doi: 10.1016/j.cjph.2021.08.015
    [32] N. Sene, A. N. Fall, Homotopy perturbation ρ-Laplace transform method and its application to the fractional diffusion equation and the fractional diffusion-reaction equation, Fractal Fract., 3 (2019), 14. https://doi.org/10.3390/fractalfract3020014 doi: 10.3390/fractalfract3020014
    [33] J. Hristov, Approximate solutions to fractional subdiffusion equations, Euro. Phys. J. Spec. Top., 193 (2011), 229–243. https://doi.org/10.1140/epjst/e2011-01394-2 doi: 10.1140/epjst/e2011-01394-2
    [34] M. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comp. Appl. Math., 172 (2004), 65–77. https://doi.org/10.1016/j.cam.2004.01.033 doi: 10.1016/j.cam.2004.01.033
    [35] M. Caputo, Linear models of dissipation whose Q is almost frequency independent—Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [36] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [37] A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), D4016005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091
    [38] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Soliton Fract., 89 (2016), 447–454. https://doi.org/10.1016/j.chaos.2016.02.012 doi: 10.1016/j.chaos.2016.02.012
    [39] M. Caputo, M. Fabrizio, On the notion of fractional derivative and applications to the hysteresis phenomena, Meccanica, 52 (2017), 3043–3052. https://doi.org/10.1007/s11012-017-0652-y doi: 10.1007/s11012-017-0652-y
    [40] T. M. Atanacković, S. Pilipović, D. Zorica, Properties of the Caputo-Fabrizio fractional derivative and its distributional settings, Frac. Calc. Appl. Anal., 21 (2018), 29–44. https://doi.org/10.1515/fca-2018-0003 doi: 10.1515/fca-2018-0003
    [41] G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transforms, J. Comput. Appl. Math., 10 (1984), 113–132. https://doi.org/10.1016/0377-0427(84)90075-X doi: 10.1016/0377-0427(84)90075-X
    [42] K. Singh, I. Kaur, E. M. Craciun, Hygro-photo-thermoelastic solid cylinder under moisture and thermal diffusivity with Moore-Gibson-Thompson theory, Discover Mech. Eng., 2 (2023), 21. https://doi.org/10.1007/s44245-023-00028-1 doi: 10.1007/s44245-023-00028-1
    [43] D. K. Sharma, D. Thakur, Effect of three phase lag model on the free vibration analysis of nonlocal elastic generalized thermo-diffusive sphere, Mat. Today Proc., 42 (2021), 370–376. https://doi.org/10.1016/j.matpr.2020.09.560 doi: 10.1016/j.matpr.2020.09.560
    [44] Y. Guo, C. Xiong, L. Wang, K. Yu, Dynamic response of the fractional order thermoelastic diffusion problem of an infinite body with a cylindrical tunnel cavity under different shock loads, Waves Rand. Comp. Media, 2022, 1–21. https://doi.org/10.1080/17455030.2022.2099596 doi: 10.1080/17455030.2022.2099596
    [45] R. Kumar, N. Sharma, S. Chopra, Photothermoelastic interactions under Moore-Gibson-Thompson thermoelasticity, Coupled Syst. Mech., 11 (2022), 459. https://doi.org/10.12989/csm.2022.11.5.459 doi: 10.12989/csm.2022.11.5.459
    [46] Q. L. Yue, C. X. He, M. C. Wu, T. S. Zhao, Advances in thermal management systems for next-generation power batteries, Int. J. Heat Mass Trans., 181 (2021), 121853. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121853 doi: 10.1016/j.ijheatmasstransfer.2021.121853
    [47] Y. Huang, X. Xiao, H. Kang, J. Lv, R. Zeng, J. Shen, Thermal management of polymer electrolyte membrane fuel cells: A critical review of heat transfer mechanisms, cooling approaches, and advanced cooling techniques analysis, Energy Conv. Manag., 254 (2022), 115221. https://doi.org/10.1016/j.enconman.2022.115221 doi: 10.1016/j.enconman.2022.115221
    [48] G. Geetanjali, P. K. Sharma, Impact of fractional strain on medium containing spherical cavity in the framework of generalized thermoviscoelastic diffusion, J. Therm. Stress., 46 (2023), 333–350. https://doi.org/10.1080/01495739.2023.2176386 doi: 10.1080/01495739.2023.2176386
    [49] S. Gupta, R. Dutta, S. Das, Memory response in a nonlocal micropolar double porous thermoelastic medium with variable conductivity under Moore-Gibson-Thompson thermoelasticity theory, J. Ocean Eng. Sci., 8 (2023), 263–277. https://doi.org/10.1016/j.joes.2022.01.010 doi: 10.1016/j.joes.2022.01.010
    [50] A. E. Abouelregal, M. Marin, A. Foul, S. S. Askar, Thermomagnetic responses of a thermoelastic medium containing a spherical hole exposed to a timed laser pulse heat source, Case Stud. Therm. Eng., 56 (2024), 104288. https://doi.org/10.1016/j.csite.2024.104288 doi: 10.1016/j.csite.2024.104288
    [51] Z. N. Xue, Y. J. Yu, X. G. Tian, Transient responses of multi-layered structures with interfacial conditions in the generalized thermoelastic diffusion theory, Int. J. Mech. Sci., 131 (2017), 63–74. https://doi.org/10.1016/j.ijmecsci.2017.05.054 doi: 10.1016/j.ijmecsci.2017.05.054
    [52] C. Li, H. Guo, X. Tian, Transient responses of a hollow cylinder under thermal and chemical shock based on generalized diffusion-thermoelasticity with memory-dependent derivative, J. Therm. Stress., 42 (2019), 313–331. https://doi.org/10.1080/01495739.2018.1486689 doi: 10.1080/01495739.2018.1486689
    [53] A. E. Abouelregal, M. Marin, A. Foul, S. S. Askar, Coupled responses of thermomechanical waves in functionally graded viscoelastic nanobeams via thermoelastic heat conduction model including Atangana-Baleanu fractional derivative, Sci. Rep., 14 (2024), 9122. https://doi.org/10.1038/s41598-024-58866-2 doi: 10.1038/s41598-024-58866-2
    [54] W. Gao, P. Veeresha, D. G. Prakasha, B. Senel, H. M. Baskonus, Iterative method applied to the fractional nonlinear systems arising in thermoelasticity with Mittag-Leffler kernel, Fractals, 28 (2020), 2040040. https://doi.org/10.1142/S0218348X2040040X doi: 10.1142/S0218348X2040040X
    [55] A. Genovese, F. Farroni, A.Sakhnevych, Fractional calculus approach to reproduce material viscoelastic behavior, including the time–temperature superposition phenomenon, Polymers, 14 (2022), 4412. https://doi.org/10.3390/polym14204412 doi: 10.3390/polym14204412
    [56] Y. Lu, C. Li, T. He, Fractional-order non-Fick mechanical-diffusion coupling model based on new fractional derivatives and structural transient dynamic responses of multilayered composite laminates, Arch. Appl. Mech., 94 (2024), 239–259. https://doi.org/10.1007/s00419-023-02518-w doi: 10.1007/s00419-023-02518-w
    [57] A. E. Abouelregal, F. Alsharif, H. Althagafi, Y. Alhassan, Fractional heat transfer DPL model incorporating an exponential Rabotnov kernel to study an infinite solid with a spherical cavity, AIMS Mathematics, 9 (2024), 18374–18402. https://doi.org/10.3934/math.2024896 doi: 10.3934/math.2024896
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(559) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog