Research article

Modular relaxed indistinguishability and the aggregation problem

  • Received: 19 April 2024 Revised: 25 June 2024 Accepted: 26 June 2024 Published: 05 July 2024
  • MSC : 03B50, 03B52, 03E72

  • The notion of indistinguishability operator plays a central role in a large number of problems that arise naturally in decision-making, artificial intelligence, and computer science. Among the different issues studied for these operators, the aggregation problem has been thoroughly explored. In some cases, the notion of indistinguishability operator can be too narrow and, for this reason, we can find two different extensions of such notion in the literature. On the one hand, modular indistinguishability operators make it possible to measure the degree of similarity or indistinguishability with respect to a parameter. On the other hand, relaxed indistinguishability operators delete the reflexivity condition of classical indistinguishability operators. In this paper, we introduced the notion of modular relaxed indistinguishability operator unifying under the same framework all previous notions. We focused our efforts on the study of the associated aggregation problem. Thus, we introduced the notion of modular relaxed indistinguishability operator aggregation function for a family of t-norms extending the counterpart formulated for classical non-modular relaxed indistinguishability operators. We provided characterizations of such functions in terms of triangle triplets with respect to a family of t-norms. Moreover, we addressed special cases where the operators fulfill a kind of monotony and a condition called small-self indistinguishability. The differences between the modular and the non-modular aggregation problem were specified and illustrated by means of suitable examples.

    Citation: M. D. M. Bibiloni-Femenias, O. Valero. Modular relaxed indistinguishability and the aggregation problem[J]. AIMS Mathematics, 2024, 9(8): 21557-21579. doi: 10.3934/math.20241047

    Related Papers:

  • The notion of indistinguishability operator plays a central role in a large number of problems that arise naturally in decision-making, artificial intelligence, and computer science. Among the different issues studied for these operators, the aggregation problem has been thoroughly explored. In some cases, the notion of indistinguishability operator can be too narrow and, for this reason, we can find two different extensions of such notion in the literature. On the one hand, modular indistinguishability operators make it possible to measure the degree of similarity or indistinguishability with respect to a parameter. On the other hand, relaxed indistinguishability operators delete the reflexivity condition of classical indistinguishability operators. In this paper, we introduced the notion of modular relaxed indistinguishability operator unifying under the same framework all previous notions. We focused our efforts on the study of the associated aggregation problem. Thus, we introduced the notion of modular relaxed indistinguishability operator aggregation function for a family of t-norms extending the counterpart formulated for classical non-modular relaxed indistinguishability operators. We provided characterizations of such functions in terms of triangle triplets with respect to a family of t-norms. Moreover, we addressed special cases where the operators fulfill a kind of monotony and a condition called small-self indistinguishability. The differences between the modular and the non-modular aggregation problem were specified and illustrated by means of suitable examples.



    加载中


    [1] M. D. M. Bibiloni-Femenias, J. Guerrero, J.-J. Miñana, O. Valero, Indistinguishability operators via Yager t-norms and their applications to swarm multi-agent task allocation, Mathematics, 9 (2021), 190. https://doi.org/10.3390/math9020190 doi: 10.3390/math9020190
    [2] D. Boixader, J. Recasens, Localization relations, Fuzzy Set. Syst., 484 (2024), 108929. https://doi.org/10.1016/j.fss.2024.108929
    [3] M. Bukatin, R. Kopperman, S. Matthews, Some corollaries of the correspondence between partial metrics and multivalued equalities, Fuzzy Set. Syst., 256 (2014), 57–72. https://doi.org/10.1016/j.fss.2013.08.016 doi: 10.1016/j.fss.2013.08.016
    [4] T. Calvo, J. Recasens, On the representation of local indistinguishability operators, Fuzzy Set. Syst., 410 (2021), 90–108. https://doi.org/10.1016/j.fss.2020.06.009 doi: 10.1016/j.fss.2020.06.009
    [5] V. V. Chistyakov, Modular metric spaces, I: basic concepts, Nonlinear Anal. Theor., 72 (2010), 1–14. https://doi.org/10.1016/j.na.2009.04.057
    [6] V. V. Chistyakov, Metric modular spaces: theory and applications, Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-25283-4
    [7] B. De Baets, R. Mesiar, Metrics and t-equalities, J. Math. Anal. Appl., 267 (2002), 351–347. https://doi.org/10.1006/jmaa.2001.7786 doi: 10.1006/jmaa.2001.7786
    [8] B. De Baets, R. Mesiar, Pseudo-metrics and t-equivalences, J. Fuzzy Math., 5 (1997), 471–481.
    [9] M. Demirci, The order-theoretic duality and relations between partial metrics and local equalities, Fuzzy Set. Syst., 192 (2012), 45–57. https://doi.org/10.1016/j.fss.2011.04.014 doi: 10.1016/j.fss.2011.04.014
    [10] J. Drewniak, U. Dudziak, Preservation of properties of fuzzy relations during aggregation processes, Kybernetika, 43 (2007), 115–132.
    [11] J. Fodor, M. Roubens, Fuzzy preference modelling and multicriteria decision support, Dordrecht: Springer, 1994. https://doi.org/10.1007/978-94-017-1648-2
    [12] P. Fuster-Parra, J. Martín, J.-J. Miñana, O. Valero, A study on the relationship between relaxed metrics and indistinguishability operators, Soft Comput., 23 (2019), 6785–6795. https://doi.org/10.1007/s00500-018-03675-9 doi: 10.1007/s00500-018-03675-9
    [13] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
    [14] G. Gerla, Representation theorems for fuzzy orders and quasi-metrics, Soft Comput., 8 (2004), 571–580. https://doi.org/10.1007/s00500-003-0316-9 doi: 10.1007/s00500-003-0316-9
    [15] J.-D.-D. González-Hedström, J.-J. Miñana, O. Valero, Fuzzy preorders and generalized distances: the aggregation problem revisited, Fuzzy Set. Syst., 474 (2024), 108760. https://doi.org/10.1016/j.fss.2023.108760 doi: 10.1016/j.fss.2023.108760
    [16] J.-D.-D. González-Hedström, J.-J. Miñana, O. Valero, Relaxed indistinguishability relations and relaxed metrics: the aggregation problem, Axioms, 11 (2022), 431. https://doi.org/10.3390/axioms11090431 doi: 10.3390/axioms11090431
    [17] D. Gopal, J. Martinez-Moreno, Recent advances and applications of fuzzy metric fixed point theory, New York: CRC Press, 2024. https://doi.org/10.1201/9781003427797
    [18] S. Gottwald, On t-norms which are related to distances of fuzzy sets, Busefal, 50 (1992), 25–30.
    [19] J. Guerrero, J. Antich, O. Valero, On the use of fuzzy preorders and asymmetric distances for multi-robot communication, AIMS Math., 9 (2024), 11511–11536. https://doi.org/10.3934/math.2024565 doi: 10.3934/math.2024565
    [20] J. Guerrero, J.-J. Miñana, O. Valero, On the use of fuzzy preorders in multi-robot task allocation problem, In: Information processing and management of uncertainty in knowledge-based systems. Theory and foundations. IPMU 2018, Cham: Springer, 2018,195–206. https://doi.org/10.1007/978-3-319-91473-2_17
    [21] J. Guerrero, J.-J. Miñana, O. Valero, G. Oliver, Indistinguishability operators applied to task allocation problems in multi-agent systems, Appl. Sci., 7 (2017), 963. https://doi.org/10.3390/app7100963 doi: 10.3390/app7100963
    [22] J. Guerrero, O. Valero, G. Oliver, Toward a possibilistic swarm multi-robot task allocation: theoretical and experimental results, Neural Process. Lett., 46 (2017), 881–897. https://doi.org/10.1007/s11063-017-9647-x doi: 10.1007/s11063-017-9647-x
    [23] P. Hitzler, A. Seda, Mathematical aspects of logic programming semantics, Boca Raton: CRC Press, 2011. https://doi.org/10.1201/b10397
    [24] J. Jacas, J. Recasens, Aggregation of t-transitive relations, Int. J. Intell. Syst., 18 (2003), 1193–12147. https://doi.org/10.1002/int.10141 doi: 10.1002/int.10141
    [25] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Dordrecht: Springer, 2000. https://doi.org/10.1007/978-94-015-9540-7
    [26] G. J. Klir, B. Yuan, Fuzzy sets and fuzzy logic: theory and applications, Upper Saddle River: Prentice Hall, 1995.
    [27] I. Kramosil, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344.
    [28] S. G. Matthews, An extensional treatment of lazy data flow dedlock, Theor. Comput. Sci., 151 (1995), 195–205. https://doi.org/10.1016/0304-3975(95)00051-W doi: 10.1016/0304-3975(95)00051-W
    [29] S. G. Matthews, Metric domains for completeness, PhD thesis, University of Warwick, 1985.
    [30] S. G. Matthews, Notes on the separability in metric spaces, Coventry, UK: Department of Computer Science, 1990, Number 160.
    [31] S. G. Matthews, Partial metric topology, Ann. NY. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
    [32] G. Mayor, J. Recasens, Preserving t-transitivity, In: Proceedings of the Catalan association for artificial intelligence international conference. CCIA 2016, IOS Press, 2016, 79–87.
    [33] J.-J. Miñana, O. Valero, On indistinguishability operators, fuzzy metrics and modular metrics, Axioms, 6 (2017), 34. https://doi.org/10.3390/axioms6040034 doi: 10.3390/axioms6040034
    [34] S. Montes, I. Montes, T. Iglesias, Fuzzy relations: past, present and future, In: Springer handbook of computational intelligence, Berlin, Heidelberg: Springer, 2015,171–181. https://doi.org/10.1007/978-3-662-43505-2_11
    [35] S. V. Ovchinnikov, Representations of transitive fuzzy relations, In: Aspects of vagueness, Dordrech: Springer, 1984,105–118. https://doi.org/10.1007/978-94-009-6309-2_7
    [36] K. Peeva, Y. Kyosev, Fuzzy relational calculus: theory, applications and software, London: World Scientific, 2004. https://doi.org/10.1142/5683
    [37] F. E. Petry, Fuzzy databases: principles and applications, New York: Springer, 2012. https://doi.org/10.1007/978-1-4613-1319-9
    [38] A. Pradera, E. Trillas, E. Castiñeira, On the aggregation of some classes of fuzzy relations, In: Technologies for constructing intelligent systems 2, Heidelberg: Springer, 2002,125–136. https://doi.org/10.1007/978-3-7908-1796-6_10
    [39] J. Recasens, Indistinguishability operators: modelling fuzzy equalities and fuzzy equivalence relations, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-16222-0
    [40] T. C. Sánchez, P. Fuster-Parra, O. Valero, The aggregation of transitive fuzzy relations revisited, Fuzzy Set. Syst., 446 (2022), 243–260. https://doi.org/10.1016/j.fss.2020.11.012 doi: 10.1016/j.fss.2020.11.012
    [41] T. C. Sánchez, P. Fuster-Parra, O. Valero, Aggregation on relaxed indistinguishability operators based on different triangular norms, In: Proceedings of conferencia de la asociación española para la inteligencia artificial. CAEPIA 2018, Asociación Española para la Inteligencia Artificial (AEPIA), 2018,415–419.
    [42] A. K. Seda, P. Hitzler, Generalized distance functions in the theory of computation, The Computer Journal, 53 (2010), 443–464. https://doi.org/10.1093/comjnl/bxm108 doi: 10.1093/comjnl/bxm108
    [43] N. Shahzad, O. Valero, On 0-complete partial metric spaces and quantitative fixed point techniques in denotational semantics, Abstr. Appl. Anal., 2013 (2013), 985095. https://doi.org/10.1155/2013/985095 doi: 10.1155/2013/985095
    [44] N. Shahzad, O. Valero, M. A. Alghamdi, M. A. Alghamdi, A fixed point theorem in partial quasi-metric spaces and an application to software engineering, Appl. Math. Comput., 268 (2015), 1292–1301. https://doi.org/10.1016/j.amc.2015.06.074 doi: 10.1016/j.amc.2015.06.074
    [45] A. Stojmirović, Quasi-metrics, similarities and searches: aspects of geometry of protein datasets, PhD thesis, Victoria University of Wellington, 2005.
    [46] A. Stojmirović, Y. K. Yu, Geometric aspects of biological sequence comparison, J. Comput. Biol., 16 (2009), 579–610. https://doi.org/10.1089/cmb.2008.0100 doi: 10.1089/cmb.2008.0100
    [47] E. Trillas, Apunte Sobre la Indistinguibilidad, Theoria, 8 (1993), 23–49.
    [48] O. Valero, J. Antich, A. Tauler-Rosselló, J. Guerrero, J.-J. Miñana, A. Ortiz, Multi-robot task allocation methods: a fuzzy optimization approach, Inform. Sciences, 648 (2023), 119508. https://doi.org/10.1016/j.ins.2023.119508 doi: 10.1016/j.ins.2023.119508
    [49] L. Valverde, On the structure of f-indistinguishability operators, J. Math. Anal. Appl., 17 (1985), 313–328. https://doi.org/10.1016/0165-0114(85)90096-X doi: 10.1016/0165-0114(85)90096-X
    [50] X. Wang, D. Ruan, E. E. Kerre, Mathematics of fuzziness: basic issues, Berlin, Heidelberg: Springer, 2009. https://doi.org/10.1007/978-3-540-78311-4
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(471) PDF downloads(30) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog