Research article

Analysis of a prey-predator system incorporating the additive Allee effect and intraspecific cooperation

  • Received: 30 September 2023 Revised: 18 November 2023 Accepted: 26 November 2023 Published: 07 December 2023
  • MSC : 34C23, 34D23

  • To understand the influence of the Allee effect and intraspecific cooperation on the dynamics of a predator-prey system, we constructed a model using ordinary differential equations. Our research shows that the system exhibits more complex dynamics, including possible bistability between alternative semi-trivial states and an Allee effect for prey. The Allee effect can destabilize the system. The equilibrium points of the system could change from stable to unstable. Otherwise, even if the system were stable, it would take much longer time to reach a stable state. We also find that the presence of the Allee effect of prey increases the positive equilibrium density of the predator but has no effect on the positive equilibrium density of the prey. It should be noted that the influence of nonlinear predator mortality also causes the system to take a longer time to reach a steady state.

    Citation: Yalong Xue. Analysis of a prey-predator system incorporating the additive Allee effect and intraspecific cooperation[J]. AIMS Mathematics, 2024, 9(1): 1273-1290. doi: 10.3934/math.2024063

    Related Papers:

  • To understand the influence of the Allee effect and intraspecific cooperation on the dynamics of a predator-prey system, we constructed a model using ordinary differential equations. Our research shows that the system exhibits more complex dynamics, including possible bistability between alternative semi-trivial states and an Allee effect for prey. The Allee effect can destabilize the system. The equilibrium points of the system could change from stable to unstable. Otherwise, even if the system were stable, it would take much longer time to reach a stable state. We also find that the presence of the Allee effect of prey increases the positive equilibrium density of the predator but has no effect on the positive equilibrium density of the prey. It should be noted that the influence of nonlinear predator mortality also causes the system to take a longer time to reach a steady state.



    加载中


    [1] R. Hering, Oscillations in Lotka-Volterra systems of chemical reactions, J. Math. Chem., 5 (1990), 197–202. https://doi.org/10.1007/BF01166429 doi: 10.1007/BF01166429
    [2] G. Laval, R. Pellat, M. Perulli, Study of the disintegration of Langmuir waves, Plasma Physics, 11 (1969), 579–588. https://dx.doi.org/10.1088/0032-1028/11/7/003 doi: 10.1088/0032-1028/11/7/003
    [3] F. Busse, Transition to Turbulence Via the Statistical Limit Cycle Route, (eds H. Haken) Chaos and Order in Nature. Springer Series in Synergetics, Berlin: Springer, 1981. https://doi.org/10.1007/978-3-642-68304-6_4
    [4] S. Solomon, P. Richmond, Stable power laws in variable economies; Lotka-Volterra implies Pareto-Zipf, Eur. Phys. J. B., 27 (2002), 257–261. https://doi.org/10.1140/epjb/e20020152 doi: 10.1140/epjb/e20020152
    [5] M. Carfora, I. Torcicollo, Cross-Diffusion-Driven instability in a predator-prey system with fear and group defense, Mathematics, 8 (2020), 1244. https://doi.org/10.3390/math8081244 doi: 10.3390/math8081244
    [6] J. Chen, X. He, F. Chen, The influence of fear effect to a discrete-time predator-prey system with predator has other food resource, Mathematics, 9 (2021), 865. https://doi.org/10.3390/math9080865 doi: 10.3390/math9080865
    [7] H. Chen, C. Zhang, Dynamic analysis of a Leslie-Gower-type predator-prey system with the fear effect and ratio-dependent Holling III functional response, Nonlinear Anal.-Model. Control, 27 (2022), 904–926. https://doi.org/10.15388/namc.2022.27.27932 doi: 10.15388/namc.2022.27.27932
    [8] W. Allee, Animal Aggregations: A Study in General Sociology, Chicago: University of Chicago Press, 1931. https://doi.org/10.5962/bhl.title.7313
    [9] D. Jonhson, A. Liebhold, P. Tobin, O. Bjørnstad, Allee effect and pulsed invasion of the gypsy moth, Nature, 444 (2006), 361–363. https://doi.org/10.1038/nature05242 doi: 10.1038/nature05242
    [10] E. Angulo, G. Roemer, L. Berec, J. Gascoigne, F. Courchamp, Double Allee effects and extinction in the island fox, Nature, 21 (2007), 1082–1091. https://doi.org/10.1111/j.1523-1739.2007.00721.x doi: 10.1111/j.1523-1739.2007.00721.x
    [11] H. Davis, C. Taylor, J. Lambrinos, D. Strong, Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora), PNAS, 101 (2004), 13804–13807. https://doi.org/10.1073/pnas.0405230101 doi: 10.1073/pnas.0405230101
    [12] C. Taylor, A. Hastings, Finding optimal control strategies for invasive species: a density-structured model for Spartina alterniflora, J. Appl. Ecol., 41 (2004), 1049–1057. https://doi.org/10.1111/j.0021-8901.2004.00979.x doi: 10.1111/j.0021-8901.2004.00979.x
    [13] C. Celik, O. Duman, Allee effect in a discrete-time predator-prey system, Chaos Soliton. Fract., 40 (2009), 1956–1962. https://doi.org/10.1016/j.chaos.2007.09.077 doi: 10.1016/j.chaos.2007.09.077
    [14] H. Merdan, O. Duman, On the stability analysis of a general discrete-time population model involving predation and Allee effects, Chaos Soliton. Fract., 40 (2009), 1169–1175. https://doi.org/10.1016/j.chaos.2007.08.081 doi: 10.1016/j.chaos.2007.08.081
    [15] O. Duman, H. Merdan, Stability analysis of continuous population model involving predation and Allee effect, Chaos Soliton. Fract., 41 (2009), 1218–1222. https://doi.org/10.1016/j.chaos.2008.05.008 doi: 10.1016/j.chaos.2008.05.008
    [16] S. Zhou, Y. Liu, G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23–31. https://doi.org/10.1016/j.tpb.2004.06.007 doi: 10.1016/j.tpb.2004.06.007
    [17] H. Merdan, Stability analysis of a Lotka-Volterra type predator-prey system involving Allee effects, Anziam J., 52 (2011), 139–145. https://doi.org/10.21914/anziamj.v52i0.3418 doi: 10.21914/anziamj.v52i0.3418
    [18] X. Guan, Y. Liu, X. Xie, Stability analysis of a Lotka-Volterra type predator-prey system with Allee effect on the predator species, Commun. Math. Biol. Neurosci., 2018 (2018), Article ID 9. https://doi.org/10.28919/cmbn/3654 doi: 10.28919/cmbn/3654
    [19] F. Chen, X. Guan, X. Huang, H. Deng, Dynamic behaviors of a Lotka-Volterra type predator-prey system with Allee effect on the predator species and density dependent birth rate on the prey species, Open Math., 17 (2019), 1186–1202. https://doi.org/10.1515/math-2019-0082 doi: 10.1515/math-2019-0082
    [20] J. Wang, J. Shi, J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 62 (2011), 291–331. https://doi.org/10.1007/s00285-010-0332-1 doi: 10.1007/s00285-010-0332-1
    [21] E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma, Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Appl. Math. Model., 35 (2011), 366–381. https://doi.org/10.1016/j.apm.2010.07.001 doi: 10.1016/j.apm.2010.07.001
    [22] B. Dennis, Allee effects: population growth, critical density, and the chance of extinction, Nat. Resour Model., 3 (1989), 481–538. https://doi.org/10.1111/j.1939-7445.1989.tb00119.x doi: 10.1111/j.1939-7445.1989.tb00119.x
    [23] C. Zhang, W. Yang, Dynamic behaviors of a predator–prey model with weak additive Allee effect on prey, Nonlinear Anal.-Real., 55 (2020), 103137. https://doi.org/10.1016/j.nonrwa.2020.103137 doi: 10.1016/j.nonrwa.2020.103137
    [24] C. Ke, M. Yi, Y. Guo, Qualitative analysis of a spatiotemporal prey-predator model with additive Allee effect and fear effect, Complexity, 2022 (2022), Article ID 5715922. https://doi.org/10.1155/2022/5715922 doi: 10.1155/2022/5715922
    [25] L. Chen, T. Liu, F. Chen, Stability and bifurcation in a two-patch model with additive Allee effect, AIMS Math., 7 (2022), 536–551. doi: 10.3934/math.2022034 doi: 10.3934/math.2022034
    [26] X. He, Z. Zhu, J. Chen, F. Chen, Dynamical analysis of a Lotka Volterra commensalism model with additive Allee effect, Open Math., 20 (2022), 646–665. https://doi.org/10.1515/math-2022-0055 doi: 10.1515/math-2022-0055
    [27] M. Hamilton, O. Burger, J. DeLong, J. Brown, Population stability, cooperation, and the invasibility of the human species, PNAS, 106 (2009), 12255–12260. https://doi.org/10.1073/pnas.0905708106 doi: 10.1073/pnas.0905708106
    [28] J. Jacobs, Cooperation, optimal density and low density thresholds: yet another modification of the Logistic model, Oecologia, 64 (1984), 389–395. https://doi.org/10.1007/BF00379138 doi: 10.1007/BF00379138
    [29] R. Lande, S. Engen, B. Saether, Stochastic Population Dynamics in Ecology and Conservation, London: Oxford Univ. Press, 2003. https://doi.org/10.1093/acprof: oso/9780198525257.001.0001
    [30] Y. Zhang, Y. Fan, M. Liu, Analysis of a stochastic single‑species model with intraspecific cooperation, Methodol. Comput. Appl., 24 (2022), 3101–3120. https://doi.org/10.1007/s11009-022-09957-y doi: 10.1007/s11009-022-09957-y
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(925) PDF downloads(84) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog