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Abstract: To understand the influence of the Allee effect and intraspecific cooperation on the
dynamics of a predator-prey system, we constructed a model using ordinary differential equations.
Our research shows that the system exhibits more complex dynamics, including possible bistability
between alternative semi-trivial states and an Allee effect for prey. The Allee effect can destabilize the
system. The equilibrium points of the system could change from stable to unstable. Otherwise, even
if the system were stable, it would take much longer time to reach a stable state. We also find that the
presence of the Allee effect of prey increases the positive equilibrium density of the predator but has no
effect on the positive equilibrium density of the prey. It should be noted that the influence of nonlinear
predator mortality also causes the system to take a longer time to reach a steady state.
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1. Introduction

From single species to different species interacting in the same habitat, there is a growing interest
in the study of population evolution. Population dynamics is one of the most discussed topics among
scholars. The study of the predator-prey system focuses on qualitative aspects, such as equilibrium,
local and global stability, and the presence of limit cycles. The predator-prey system, originally
proposed by Alfred J. Lotka and Vito Volterra in 1925, holds a prominent position in the field of
ecological dynamics. The underlying foundation of this model rests upon the premise of linear
behaviors. Since its inception, a significant corpus of theoretical research has emerged. This system has
been extensively employed and implemented in various fields, including chemical reactions [1], plasma
physics [2], hydrodynamics [3], as well as social science and economics [4]. Therefore, population
models, especially predator-prey models, are extremely important in both theoretical research and other
fields of application. From a theoretical research perspective, studying them is also highly intriguing.
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In fact, the predator-prey model has consistently been a popular topic in the field of mathematical
biology research, especially in two-dimensional space. This refers to a situation in which there is one
predator population and one prey population.

Stability is a paramount concern in qualitative research on ecosystems, and scholars have conducted
numerous investigations in this field, resulting in a wealth of comprehensive findings. In certain
ecological systems, prey may exhibit fear responses toward predator, thereby altering their behavior
and making it more challenging for predators to successfully capture their prey. For example, playing
the sounds of known predators in the wild reduces the spawning rate of songbirds by forty percent.
Some researchers have also investigated various models of fear effect in conjunction with different
functional responses [5–7].

The Allee effect manifests when population densities are at a low level, thereby posing challenges
for individuals in terms of reproduction and survival. The Allee effect is a well-documented biological
phenomenon that provides insight into the correlation between the population’s growth rate and its
size or density. The proposal of this concept can be traced back to W.C. Allee, as documented in
the reference [8]. According to its density dependence at low density, the Allee effect can be divided
into two types: strong Allee effect and weak Allee effect. For example, the island fox (Urocyon
littoralis) and the gypsy moth (Lymantria dispar), an invasive species, will suffer from a strong Allee
effect [9, 10], while another invasive species, the smooth cordgrass (Spartina alterniflora), will show
a weak Allee effect [11, 12]. In recent years, there has been a notable focus among researchers on
the investigation of the Allee effect. The Allee effect significantly impacts the dynamic behavior of
the system. For instance, the Allee effect has the potential to modify the local stability of the system
singularity or induce system instability [13, 14]. Additionally, it can prolong the time required for the
system to reach a stable equilibrium point [15, 16].

Mathematically, the Allee effect is commonly characterized by modifying the growth function,
usually achieved by introducing a multiplication factor. In the study conducted by the author [17], the
Lotka-Volterra predator-prey system was examined, with particular attention given to the incorporation
of the Allee effect: 

dx
dt = rα(x)x(1 − x) − axy,

dy
dt = ay(x − y),

where x and y represent the densities of the prey population and the predator population, respectively.
The term α(x) = x/(β + x) represents the Allee effect. The system always has an unstable trivial
equilibrium point and an unstable semi-trivial equilibrium point, which is consistent with the results
of the system without the Allee effect(β = 0). In classical models, a coexisting equilibrium point is
ultimately present and globally asymptotically stable. However, the Allee effect disrupts this by only
allowing a positive equilibrium to exist and be locally asymptotically stable when r−aβ > 0. The Allee
effect, while not altering the positive equilibrium point of the system, exerts two distinct influences on
the dynamics of the system. Firstly, the prolongation of the time required for the system to achieve
equilibrium occurs. Secondly, it leads to a decrease in the population density of both populations. If
we consider the fact that species higher up in food chains are more likely to face extinction, Guan
et al. in [18] focused their study on the Allee effect on the predator population, rather than the prey
population. The proposed system is analogous to the one described in [17], as it considers the identical
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function α: 
dx
dt = rx(1 − x) − axy,

dy
dt = aα(y)y(x − y).

Their research shows that in cases where a > b, the system exhibits persistence, indicating that both the
trivial and semi-trivial equilibrium points are characterized by instability. Regarding the local stability
of the positive equilibrium point, the authors obtained identical findings to those reported in the study
by [17]. The Bendixon-Dulac criterion was employed to confirm the absence of a limit cycle, thus
proving that the only positive equilibrium point is globally asymptotically stable. At the end of the
study, the authors’ numerical simulations demonstrated that the presence of the Allee effect did not
have any impact on the final density of both predator and prey populations. This outcome exhibits
disparity when compared to the findings reported in [17]. Afterward, Chen et al. in [19] chose a more
realistic growth model for prey birth rate, known as the Beverton-Holt function with saturation effect,
instead of the logical model that was previously used. Similar to previous systems, the conclusions
regarding the stability of equilibrium points are the same.

Wang et al. in [20] proposed a predator-prey model with the Allee effect that is more comprehensive
in nature. They are considering the following system:

dx
dt = g(x)( f (x) − y),

dy
dt = y(g(x) − d).

The function f (x) satisfies the following conditions: f (x) ∈ C1([0,∞), f (b) = f (1) = 0, with 0 < b < 1,
f (x) is positive for b < x < 1 and negative in other case, and there exists λ̄ ∈ (b, 1) such that f ′(x) > 0
in [b, λ̄) and f ′(x) < 0 in (λ̄, 1]. Their assumption of f indicates that the prey population exhibits a
strong Allee effect. Of course, there are some models that cannot be described by the generic model
mentioned above. For instance, [21] studied a model of prey population affected by the Allee effect,
which is based on the Leslie-Gower model:

dx
dt = (r(1 − x

K )(x − m) − qy)x,

dy
dt = s(1 − y

nx )y.

In addition, another common way to introduce the Allee effect in the model is to include an
additional term in the net population growth rate. In [22], Dennis first proposed the single species
model with an additive Allee effect:

dx
dt
= rx(1 −

u
K
−

m
x + a

).

The term m/(x + a) represents the additive Allee effect, where m and a reflect the degree of Allee
effect. Later, many scholars also adopted this modeling idea in their studies. For example, the additive
Allee effects were considered in the predator-prey model [23] and the spatiotemporal prey-predator
model [24], two-patch model [25], and the Lotka-Volterra commensalism model [26]. The future of
the Allee effect awaits us not only at the empirical level but also in theoretical research. There are still
many questions that need to be addressed through models.
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Intraspecific cooperation is widespread in nature [27]. For example, Emperor penguins engage in
a behavior known as huddling, where they gather closely together and regularly rotate positions from
the outer edges to the inner core. This collective action serves to regulate their body temperature
and offers them protection against the extreme climatic conditions prevalent in Antarctica. Wolves
exhibit cooperative behavior by coordinating their movements to acquire sustenance and various other
essential resources. In [28], Jacobs proposed to illustrate the dynamics of intraspecific cooperation:

dx
dt
= x(r +

ξνx
x + ν

− µxz)

The term ξνx
x+ν indicates that intraspecific cooperation exhibits a Holling-type saturation, where ξ > 0

quantifies the effectiveness of intraspecific cooperation. The authors state that the model exhibits
rich dynamical behaviors and has numerous potential applications. There are various environmental
disturbances in nature, and neglecting the unpredictability of the environment may be one of the main
reasons why many species are extinct or on the brink of extinction [29]. In [30], Zhang et al. developed
a model that incorporates intraspecific cooperation and stochastic perturbation:

dx = x(r(λ) +
ξ(λ)ν(λ)x
x + ν(λ)

− µ(λ)xz)dt + ρ1(λ)xdϕ1(t) +
ρ2(λ)ν(λ)x2

x + ν(λ)
dϕ2(t).

They provided sufficient criteria for species extinction and permanence and analyzed the existence of
UESD. They also derived an explicit form of the density function of UESD under certain conditions.
It has also been shown that perturbations in the growth rate, such as white noise, can lead to species
extinction. Additionally, the presence of telephone noise may cause species to disappear or persist.

In general, intraspecific cooperation can improve survival by enhancing food acquisition efficiency
(evening bats), increasing prey capture effectiveness (Harris hawks, lions, spotted hyena), providing
nourishment and protection to injured individuals (African wild dogs), and collectively defending
attacked individuals (White-winged choughs, Florida scrub jays, banded mongoose, Geoffroys
marmoset). It can also increase reproduction by extending the reproductive lifespan of the breeders
(Chimpanzees, pied kingfisher, splendid fairy wren, dwarf mongoose) or by reducing the time interval
between reproductive events ( prairie voles, house mice) and increasing the number of litters produced
(Black-backed jackals). It can further increase the survival rate of offspring by feeding (Arabian
babblers, meerkats) or protecting the offspring (African wild dogs).

We believe that intraspecific cooperation plays an important role at higher levels of the food
chain. This is based on the fact that species at higher levels are more vulnerable to extinction
compared to species at lower levels, particularly when the higher-level species are specialists rather
than omnivorous. Therefore, we will consider a predator-prey system in which the obligate predator
exhibits intraspecific cooperation. Unlike [28] and [30], which directly incorporate a function related to
population density into the model to describe intraspecific cooperation, we will represent intraspecific
cooperation of the predator by modifying predator mortality as a decreasing function of population
size. For example, emperor penguins huddle together in low temperatures and harsh winds to ensure
they do not freeze to death. This form of intraspecific cooperation directly reduces the mortality rate
among individuals in harsh environments. So, we investigated the following system:

dx
dt = x(a − bx − m

x+α ) − cxy,

dy
dt = −

ey
y+β +

εcxy
y+β =

y
y+β (−e + εcx),

(1.1)

AIMS Mathematics Volume 9, Issue 1, 1273–1290.



1277

where x and y represent the density of prey and predator populations, respectively, and all parameters
are positive constants. The term m/(x+α) represents the additive Allee effect, while the term e/(y+ β)
represents intraspecific cooperation. The meaning of the parameters is explained in Table 1.

Table 1. Meaning of all parameters.

Parameter Meaning
a The intrinsic growth rate
b The coefficient of intraspecific
c The predation rate
e The death rate

ε ∈ (0, 1) The conversion factor
α, m The Allee constants
β The intraspecific cooperation strength

The rest of the paper is organized as follows: In Sec 2, the existence and stability of the equilibria
are discussed. In Sec 3, the occurrence of Hopf bifurcation and the limit cycle is proved. In Section 4,
the analysis focuses on the influence of the Allee effect and intraspecific competition on the system. In
Sec 5, numerical simulations are provided to verify the validity of the conclusions.

2. The existence and stability of equilibria

Firstly, all possible equilibria of system (1.1) are discussed. The equilibria of system (1.1) are
determined by the following equations: x(a − bx − cy − m

x+α ) = 0,
y

y+β (−e + εcx) = 0.
(2.1)

Obviously, Equation (2.1) always has a trivial equilibrium E0(0, 0). From the second equation of
(2.1), we have its nonnegative roots: y = 0 and x = e

cε . (1) Substituting y = 0 into the equation
a − bx − cy − m

x+α = 0 and simplifying it, we obtain the following quadratic equation

bx2 + (bα − a)x + m − aα = 0. (2.2)

Then we consider the positive root of Eq (2.2).

(i) If m − aα < 0, then Eq (2.2) has a unique positive root x1 =
a−bα+

√
(a+bα)2−4bm
2b .

(ii) If m − aα = 0 and bα − a < 0, then Eq (2.2) has a unique positive root x2 =
a−bα

b .
(iii) If m − aα > 0, bα − a < 0 and (a + bα)2 − 4bm > 0, then Eq. (2.2) has two positive roots

x3,4 =
a − bα ∓

√
(a + bα)2 − 4bm
2b

.

(iv) If m − aα > 0, bα − a < 0 and (a + bα)2 − 4bm = 0, i.e. a > bα and m = (a+bα)2

4b , then Eq (2.2) has
only one positive root x5 =

a−bα
2b .
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(2) Substituting x∗ = e
cε into the equation a − bx − cy − m

x+α = 0, we have y∗ = 1
c (a − be

cε −
mcε

e+cαε ) > 0
if a > be

cε +
mcε

e+cαε .
The existence of all equilibria of system (1.1) is shown in Table 2.

Table 2. Equilibria existence and stability.

Equilibria a m Type
E0(0, 0) m > aα or m = aα = bα2, stable node;

m < aα, saddle point;
m = aα , bα2, saddle node point.

E1(x1, 0) m < aα m < min{aα, bα2}, saddle point.
E2(x2, 0) a > bα m = aα a − bα < eb/cε, stable node;

a − bα > eb/cε, saddle point.
E3(x3, 0) a > bα aα < m < (a+bα)2

4b unstable node or saddle point.
E4(x4, 0) a − bα < eb/cε or x4 <

e
cε , stable node;

a − bα > 2eb/cε or x4 >
e
cε , saddle point.

E5(x5, 0) a > bα m = (a+bα)2

4b J11(E5) = 0, nonhyperbolic equilibrium point.
E∗(x∗, y∗) a > be

cε +
mcε

e+cαε m < b( e
cε + α)2, stable node;

m > b( e
cε + α)2, unstable node.

Secondly, the stability of all equilibria is taken into consideration. The Jacobian matrix of the
system (1.1) is

J =
(
J11 J12

J21 J22

)
,

where J11 = a − 2bx − cy − mα
(x+α)2 , J12 = −cx, J21 =

cεy
y+β and J22 =

β(−e+cεx)
(y+β)2 .

Theorem 1. E0(0, 0) is a saddle if m < aα holds, a stable node if m > aα or m = aα = bα2 holds, and
a saddle node if m = aα , bα2 holds.

Proof. The Jacobian matrix at E0(0, 0) is

J(E0) =
(
a − m

α
0

0 − e
β

)
,

whose eigenvalues are
λ1 = a − m/α, λ2 = −e/β < 0.

Consequently, E0(0, 0) is a saddle if m < aα holds, and it is a stable node if m > aα holds.
If m = aα, the system (1.1) can be expanded into a power series around E0 by using the formula

1
1+x =

∞∑
i=0

(−1)ixi (|x| < 1) and making a time transformation dτ = − e
β
dx.


dx
dτ =

β

e (b − m
α2 )x2 +

cβ
e xy − mβ

e

∞∑
i=3

(−1)iα−ixi,

dy
dτ = y −

∞∑
i=2

(−1)iβ−i+1yi −
cεx
e

∞∑
i=2

(−1)iβ−i+2yi−1 � y + Q(x, y).
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Based on the implicit function theorem, we know from y + Q(x, y) = 0 that there exists only one
function y = φ(x) such that φ(0) = φ′(0) = 0. We can solve for y to obtain y = φ(x) ≡ 0. Substituting
this into the first equation, we get

dx
dτ =

β

e (b − m
α2 )x2 −

mβ
e

∞∑
i=3

(−1)iα−ixi.

Consequently, E0(0, 0) is a stable node if m = aα = bα2 holds, and it is a saddle node if m = aα , bα2

holds. □

Let h1(x) = m
(x+α)2 − b, h2(x) = −e + εcx.

Theorem 2. Ei(xi, 0) is a saddle if h1(xi)h2(xi) < 0 holds, and is a node if h1(xi)h2(xi) > 0 holds.

Proof. The Jacobian matrix at Ei is

J(Ei) =
(
J11(Ei) J12(Ei)

0 J22(Ei)

)
,

where
J11(Ei) = a − 2bxi −

mα
(xi + α)2 = (

m
(xi + α)2 − b)xi = h1(xi)xi

and

J12 = −cxi < 0, J22(Ei) =
−e + cεxi

β
=

h2(xi)
β
,

whose eigenvalues are λ1 = J11(Ei) and λ2 = J22(Ei). Hence, Ei(xi, 0)) is a saddle if J11(Ei)J22(Ei) < 0
holds, and it is a node if J11(Ei)J22(Ei) > 0 holds.

In particular, E1(x1, 0) is a saddle if m < min{aα, bα2} holds. This is due to the fact that if m <
min{aα, bα2}, we have

J11(E1) = −(b −
m

(x1 + α)2 )x1 < −(b −
m
α2 )x1 < 0.

Now, we consider the sign of J22(E1). Let f (x, y) = a − bx − cy − m
x+α , then f (x∗, y∗) = 0 and for any

x > 0, ∂ f (x,y)
∂y = −c < 0. Consequently, f (x1, 0) = a − bx1 −

m
x1+α
,

f (x∗, 0) = a − bx∗ − m
x∗+α > f (x∗, y∗) = 0,

then
(x1 − x∗)(b −

m
(x1 + α)(x∗ + α)

) > 0.

If m < min{aα, bα2} holds, then b − m
(x1+α)(x∗+α) > b − m

α2 > 0, therefore, x1 − x∗ > 0. So

J22(E1) =
−e + cεx1

β
=

cε
β

(x1 − x∗) > 0.
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For E2(x2, 0),

J11(E2) = (bα/a − 1)bx2 < 0, J22(E2) = [cε(a − bα) − eb]/bβ.

So, E2 is a stable node if cε(a− bα) < eb holds, and it is a saddle if cε(a− bα) > eb holds. Combining
the conditions for the existence of E2, we obtain that when m = aα, E2 is a stable node if 0 < a−bα < eb

cε
holds and it is a saddle point if a − bα > eb

cε holds.
For E4(x4, 0),

J11(E4) = (
m

(x4 + α)2 − b)x4 < (
(a + bα)2/4b

[(a − bα)/2b + α]2 − b)x4 = 0, J22(E4) =
−e + cεx4

β
.

So, E4 is a stable node if cεx4 < e holds and it is a saddle if cεx4 > e holds. In particular, E4 is a stable
node when a − bα < eb

cε holds. Notice that m > aα, then

cεx4 =
cε
2b

(a − bα +
√

(a + bα)2 − 4bm) <
cε
2b

(a − bα +
√

(a + bα)2 − 4baα) =
cε
b

(a − bα) < e.

Similarly, one can determine that E4 is a saddle point when a − bα > 2eb
cε .

In order to discuss the stability of the E3, we first need to analyze it in combination with the stability
of the E0 and E4. Assume that E3 is a hyperbolic equilibrium point, there are two additional equilibrium
points in the system. From Theorem 1, we know that E0 is always a stable node when m > aα.
Therefore, E3 is an unstable node if E4 is a stable node, and E3 is an unstable node or saddle point if
E4 is a saddle point. In other words, E3 is always unstable. □

Remark: In fact, the type of semi-trivial equilibrium point is closely related to the position of the
horizontal coordinate xi and the position of the curves h1(x) and h2(x) in the plane Figure 1.

Theorem 3. If a > be
cε +

mcε
e+cαε , then there is a unique positive equilibrium. It is a stable node if

m < b( e
cε + α)2 holds and an unstable node if m > b( e

cε + α)2 holds.

Proof. From the previous analysis, we know that the system has a unique positive equilibrium
E∗(x∗, y∗) if a > be

cε +
mcε

e+cαε holds. The Jacobian matrix at E∗ is

J(E∗) =
(
J11(E∗) J12(E∗)
J21(E∗) 0

)
where

J11(E∗) = a − 2bx∗ − cy∗ −
mα

(x∗ + α)2 = (−b +
m

(x∗ + α)2 )x∗,

and
J12(E∗) = −cx∗ < 0, J21(E∗) =

cεy∗

y∗ + β
> 0.

The two eigenvalues of J(E∗) satisfy

λ1λ2 = det(J(E∗)) = −J12(E∗)J21(E∗) > 0, λ1 + λ2 = tr(J(E∗)) = J11(E∗).

Hence, it can be concluded that the two eigenvalues possess a negative real part when J11(E∗) < 0, and
possess a positive real part when J11(E∗) > 0. The positive equilibrium can be categorized as a stable
node if the condition m < b( e

cε +α)2 is satisfied. Conversely, when the condition m > b( e
cε +α)2 is met,

the positive equilibrium can be categorized as an unstable node. □
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Figure 1. Four possible positional relationships exist between the curve and the line. The
blue curve represents h1(x) = 0 (λ1 = 0), while the black line represents h2(x) = 0 (λ2 = 0).
(a) The semi-trivial equilibrium is either a saddle point if xi ∈ (0, λ2) or an unstable node if
xi ∈ (λ2,+∞). (b) The semi-trivial equilibrium can be a stable node if xi ∈ (0, λ1), a saddle
point if xi ∈ (λ1, λ2), or an unstable node if xi ∈ (λ2,+∞). (c) The semi-trivial equilibrium is
either a stable node if xi ∈ (0, λ1) or an unstable node if xi ∈ (λ1,+∞). (d) The semi-trivial
equilibrium can be a stable node if xi ∈ (0, λ2), a saddle point if xi ∈ (λ2, λ1), or an unstable
node if xi ∈ (λ1,+∞). If the semi-trivial equilibrium point happens to fall at the intersection
of the curve and line with the positive half-axis of x, then there is a singular trajectory passing
through the equilibrium point. It may consist of a stable singular trajectory (left intersection
point in (b) and (d)) and an unstable singular trajectory (intersection point in (a) and right
intersection point in (b) and (d)), or parallel trajectories with different directions above and
below the singular trajectory (intersection point in (c)).

3. Bifurcation analysis

In this section, we will investigate the occurrence of transcritical bifurcation at E0, saddle-node
bifurcation at E5, Hopf bifurcation at E∗ and the existence of a limit cycle emerging through Hopf
bifurcation.

Theorem 4. If a , b holds, then the system (1.1) experiences a transcritical bifurcation at the trivial
equilibrium E0 as the parameter m passes through the bifurcation value m = mS N = aα.

Proof. The Jacobian matrix at E0 with m = mS N is

A = J(E0,mS N) =
(
0 0
0 − e

β

)
AIMS Mathematics Volume 9, Issue 1, 1273–1290.
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Obviously, matrix A has a simple eigenvalue λ = 0 with eigenvector V , and AT has an eigenvector W
corresponding to the eigenvalue λ. After a simple calculation, we obtain

V = W = (1, 0)T ,

Fm(E0,mS N) = (0, 0)T ,

DFm(E0,mS N)V = (−1, 0)T ,

D2F(E0,mS N)(V,V) = (−2(a − b), 0)T .

Therefore,
WT Fm(E0,mS N) = 0,

WT [DFm(E0,mS N)V] = −1 , 0,

WT [D2F(E0,mS N)(V,V)] = −2(a − b) , 0.

Hence, according to Sotomayor’s theorem in [Perko, 2001], the system (1.1) experiences a transcritical
bifurcation at E0 as the parameter m passes through the bifurcation value mS N . □

Theorem 5. If a > bα and 2be , cε(a − bα) hold, then the system (1.1) experiences a saddle-node
bifurcation at the semi-trivial equilibrium E5 as the parameter m passes through the bifurcation value
m = mS N =

(a+bα)2

4b .

Proof. The Jacobian matrix at E5 with m = mS N is

A = J(E5,mS N) =
(
0 c(bα−a)

2b
0 −2be+cε(a−bα)

2b

)
Obviously, matrix A has a simple eigenvalue λ = 0 under the given condition. Let V and W be
two eigenvectors corresponding to the eigenvalue λ = 0 for the matrices A and AT . After a simple
calculation, we obtain

V = (V1,V2)T = (1, 0)T ,

W = (W1,W2)T = (1, cβ(a−bα)
cε(a−bα)−2be )T ,

Fm(E5,mS N) = (bα−a
bα+a , 0)T ,

D2F(E5,mS N)(V,V) = ( 2b(bα−a)
bα+a , 0)T .

Therefore,
WT Fm(E5,mS N) = bα−a

bα+a , 0,

WT [D2F(E5,mS N)(V,V)] = 2b(bα−a)
bα+a , 0.

Hence, according to Sotomayor’s theorem in [Perko, 2001], system (1.1) experiences a saddle-node
bifurcation at E5 as the parameter m passes through the bifurcation value mS N . □

Theorem 6. If a > be
cε +

mcε
e+cαε holds, then the system (1.1) experiences a Hopf bifurcation around E∗ at

m = m∗ = b( e
cε + α)2.
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Proof. The secular equation of the Jacobian matrix at the equilibrium point E∗ can be expressed as
follows

λ2 − tr(J(E∗))λ + det(J(E∗)) = 0,

where

det(J(E∗)) = −J12(E∗)J21(E∗) > 0, tr(J(E∗)) = J11(E∗) = (−b +
m

( e
cε + α)2 )x∗.

When m = m∗, we have

tr(J(E∗)) |m=m∗ = 0, det(J(E∗)) |m=m∗ > 0. (3.1)

The characteristic equation can be reduced to λ2 + det(J(E∗)) = 0. The equation has a pair of purely
imaginary roots. By a simple computation, we obtain

d
dm

(tr(J(E∗))) |m=m∗ =
d

dm
(tr(J11(E∗))) |m=m∗ =

x∗

(x∗ + α)2 > 0. (3.2)

Hence, from (3.1) and (3.2), it can be concluded that the system (1.1) experiences a Hopf bifurcation
around E∗ at m = m∗. When the trace of the Jacobian matrix of the system undergoes a sign change
from negative to positive, the equilibrium point E∗ becomes unstable, resulting in the occurrence of
Hopf bifurcation. □

Theorem 7. If a > be
cε +

mcε
e+cαε and m∗ < m < min{aα, b(x1 + α)(x∗ + α), b(x1 + α)2}, then the system

(1.1) exhibits the presence of a single limit cycle.

Proof. If a > be
cε +

mcε
e+cαε and m∗ < m < min{aα, b(x1 + α)(x∗ + α), b(x1 + α)2} are satisfied, it can be

inferred that E0 and E1 are saddle points, while E∗ is an unstable node. Suppose that

L1 : x − x̄ = 0, L2 : y − ȳ = 0, L3 : 2(x̄ − x∗)(y − ȳ) + ȳ(x − x∗) = 0,

where x̄ = a
b , ȳ > y∗. Obviously, x∗ < x1 < x̄. Therefore,

dL1
dt | (1.1) =

dx
dt | x=x̄ = x̄(a − bx̄ − cy − m

x̄+α ) < x̄(a − bx̄) = 0, for y > 0;

dL2
dt | (1.1) =

dy
dt | y=ȳ =

ȳ
ȳ+β (−e + cεx) = cεȳ

ȳ+β (x − x∗) < 0, for 0 < x < x∗;

dL3
dt | (1.1) = 2(x̄ − x∗) dy

dt + ȳ dx
dt = 2(x̄ − x∗) y

y+β (−e + cεx) + ȳ(ax − bx2 − cxy − mx
x+α )

< 2(x̄−x∗)(−e+cεx̄)
β

ȳ + ( a2

4b −
cx∗
2 ȳ − mx∗

x∗+α )ȳ = − cx∗
2 ȳ2 + ( 2(x̄−x∗)(−e+cεx̄)

β
+ a2

4b −
mx∗
x∗+α )ȳ

� g(y), for x∗ < x < x̄, ȳ
2 < y < ȳ.

Due to the quadratic coefficient of g(x) being − cx∗
2 < 0, let us now choose a sufficiently large value of ȳ

(or ȳ > 2
cx∗ (

2(x̄−x∗)(−e+cεx̄)
β

+ a2

4b −
mx∗
x∗+α )). This ensures that g(y) < 0, meaning dL3

dt | (1.1) < 0 for x∗ < x < x̄,
ȳ
2 < y < ȳ. By the Poincaré-Bendixson theorem, system (1.1) admits a single limit cycle in the above
region. □
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4. The influence of intraspecific cooperation and the Allee effect

Two key questions that need to be answered are how intraspecific cooperation and the Allee effect
affect the dynamic behavior of the system. The following discussion provides the answers.

We will first discuss the effect of intraspecific cooperation on the predator. We modeled intraspecific
cooperation in the predator population using the term - ey

y+β . From the previous discussion in Section
2 and Section 3, we know that the parameter β will not affect the final states of the local stability of
all equilibria, the occurrence of bifurcation at the positive equilibrium, and the existence of a limit
cycle around positive equilibria. However, we notice that the predator population net growth rate of
the predator population is a monotonically decreasing function with respect to β,

d
dβ

(
y

y + β
(−e + εcx)) = −

1
(y + β)2 < 0

That is, the growth rate of the predator population decreases gradually with an increase in the parameter
β. Thus, the growth rate of the prey population accelerates while the growth rate of the predator
population slows down. This means that the larger the value of β, the longer it takes for the predator
population to reach a stable state. In other words, even when the system is stable, it will take much
longer for it to reach a steady state.

We then discuss the effect of the Allee effect on the system. We introduced the Allee effect in the
prey population by the term mx

x+α . Firstly, due to the existence of the Allee effect in the prey population,
the number of equilibria in the system will increase. Secondly, in general, the introduction of the Allee
effect in prey population will lead to more complex dynamics of the system. From Theorem 1, we
know that E0 is a saddle if αm >

1
a , and a stable node if αm <

1
a . In other words, the local stability of the

trivial equilibrium will change from unstable to stable as the Allee effect strength decreases (E0 is just
a saddle when m = 0). The Allee effect can increase the risk of extinction for both predator and prey
populations.

From Theorem 3, we know that E∗ is an unstable node if 1
a−bx∗ −

x∗
m <

α
m <

α
b(x∗+α)2 . On the other

hand, E∗ is a stable node if αm > max{ α
b(x∗+α)2 ,

1
a−bx∗ −

x∗
m }. The critical value is given by αm =

α
b(x∗+α)2 . The

coexistence equilibrium becomes stable as the strength of the Allee effect increases. In other words,
the presence of the Allee effect in the prey population can stabilize the previously unstable positive
equilibrium. Therefore, the Allee effect plays a crucial role in maintaining the stability of the system.

On the other hand, since the prey population x∗ = e
cε is not affected by the Allee effect strength

α
m , we will only focus on the impact on the predator population. y∗ is a continuous function of αm .
Rewriting the equation, we have y∗ = 1

c (a − bx∗ − 1
x∗/m+α/m ), then dy∗

d(α/m) =
1
c ·

1
(x∗/m+α/m)2 > 0. So, the

predator population y∗ increases with the increase of the Allee effect strength. The predator population
becomes greater and greater, but it is still less than 1

c (a − bx∗).

5. Numerical simulations

Example 1. Let b = 1, c = 2, e = 1, m = 1, β = 2 and ε = 0.5. The unique positive equilibrium
point E∗(1, 0.8333) of the system is stable when a = 3 and α = 2 (Figure 2). By performing simple
calculations, we can determine that the system has two equilibrium points. The first is a trivial
equilibrium point, denoted as E0(0, 0), and the second is a semi-trivial equilibrium point, denoted
as E1(2.7913, 0). Both of these equilibrium points are saddle points.
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Figure 2. Coexistence in system (1.1).

To understand the influence of the additive Allee effect on the system, let a = 1.4 and let α take on
various values (Figure 3). Firstly, compared to the absence of the Allee effect, the presence of the Allee
effect will certainly cause a decrease in the density of predators, while changes in the density of prey
will depend on the strength of the Allee effect. In addition, if the positive equilibrium point of the system
in the absence of the Allee effect is stable, then the density of both species is positively correlated
with the strength of the Allee effect.In other words, as the strength of the Allee effect increases, the
population densities of both predator and prey will increase. Secondly, the Allee effect can act as a
destabilizing force. When α = 2 and α = 1.5, the positive equilibrium point is stable, indicating that the
predator and prey can coexist. However, when α = 1, the positive equilibrium point loses its stability
and the semi-trivial equilibrium point becomes stable, resulting in the extinction of the predator but the
survival of the prey. when α = 0.5, the semi-trivial equilibrium point loses its stability and the trivial
equilibrium point becomes stable, leading to the extinction of both the predator and the prey. Finally,
the Allee effect can result in prolonged time for populations to reach their ultimate state of survival,
while also accelerating the extinction process for populations that ultimately become extinct.
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Figure 3. Influence of the additive Allee effect.

Example 2. The main objective of this example is to analyze the influence of the strength of
intraspecific cooperation on the system from the perspective of view of numerical simulations. Let
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b = 1, c = 2, e = 1, m = 1, β = 2 and α = 2. Figure 4 shows that if an equilibrium point
(either positive or a boundary equilibrium point) is stable, variations in the strength of intraspecific
cooperation do not affect the position and stability of that equilibrium point. However, the presence of
varying strength of intraspecific cooperation can result in divergent time for species to achieve their
final state. As the strength of intraspecific cooperation increases, the time it takes for predators to
reach the final state of survival or extinction becomes longer (Figure 4(a)-4(c)). Similarly, the time it
takes for prey to reach the final state of survival also increases (Figure 4(a), 4(b)). On the other hand,
the time it takes to reach the final state of extinction becomes shorter (Figure 4(c), 4(d)).
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(b) a = 1.3.
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(c) a = 0.5.
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Figure 4. Influence of intraspecific cooperation.

Example 3. Let a = 3.1, b = 1, c = 2, e = 2, m = 3.5, α = 1, β = 5 and ε = 0.5. In this particular
scenario, the system exhibits three equilibrium points. These points include the trivial equilibrium
point denoted as E0(0, 0), the semi-trivial equilibrium point E3(0.2118, 0), and the equilibrium point
E4(1.882, 0). The simulation results are presented in Figure 5(a). It is evident from the figure that
there exist two stable nodes and one unstable saddle point. This finding suggests that, despite the prey
population not reaching a density of zero, it is still inadequate to offset the mortality rate of the predator
caused by predation. Consequently, the predator is likely to face eventual extinction, despite the energy
benefit it gains from consuming prey. Given the inevitable extinction of the predator population, the
system described by the system (1.1) will experience degeneration, leading to the emergence of a single
population system comprised exclusively of prey:

dx
dt = x(a − bx − m

x+α ) (5.1)
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In this case, the system (1.1) is equivalent to the system (5.1). The numerical simulations of system
(5.1) are shown in Figure 5(b). In fact, the final state of the prey depends on its initial density. If the
initial density falls in the interval (0, x3), the prey will eventually become extinct. On the other hand, if
the initial density falls in the interval (x3,+∞), the prey will eventually survive. In summary, the final
dynamic behavior of the system (1.1) depends on whether the initial density of the prey exceeds the
critical value x3. Furthermore, it can be concluded that the presence of the additive Allee effect has a
destabilizing effect on the original system. The global asymptotic stability of the positive equilibrium
point in the single population Logistic system is contrasted with the local stability of the corresponding
positive equilibrium point when the additive Allee effect is present. Furthermore, we can conclude
that the additive Allee effect destabilises the original system. This is because the positive equilibrium
point of the single population logistic system is globally asymptotically stable, while the corresponding
positive equilibrium point with the additive Allee effect is locally stable.

(a) system (1.1).
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Figure 5. The bi-stability behavior of the system.

Example 4. Let a = 3, b = 0.9, c = 2, e = 1, m = 2.3, α = 1, β = 2 and ε = 0.9. In this case,
the semi-trivial equilibria E0(0, 0) and E1(2.6292, 0) are saddle points and the coexisting equilibrium
E∗(0.5556, 0.5107) is an unstable node. The system exhibits one limit cycle. We can clearly observe
that the trajectories of an initial value inside and outside the limit cycle approach the limit cycle. The
simulation results are shown in Figure 6.
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