Research article

On the study of the recurrence relations and characterizations based on progressive first-failure censoring

  • Received: 22 August 2023 Revised: 18 November 2023 Accepted: 23 November 2023 Published: 30 November 2023
  • MSC : 62E10, 62N99

  • In this research, the progressive first-failure censored data (PFFC) from the Kumaraswamy modified inverse-Weibull distribution (KMIWD) were used to obtain the recurrence relations and characterizations for single and product moments. The recurrence relationships allow for a rapid and efficient assessment of the means, variances and covariances for any sample size. Additionally, the paper outcomes can be boiled down to the traditional progressive type-II censoring. Also, some special cases are limited to some lifetime distributions as the exponentiated modified inverse Weibull and Kumaraswamy inverse exponential.

    Citation: Najwan Alsadat, Mahmoud Abu-Moussa, Ali Sharawy. On the study of the recurrence relations and characterizations based on progressive first-failure censoring[J]. AIMS Mathematics, 2024, 9(1): 481-494. doi: 10.3934/math.2024026

    Related Papers:

  • In this research, the progressive first-failure censored data (PFFC) from the Kumaraswamy modified inverse-Weibull distribution (KMIWD) were used to obtain the recurrence relations and characterizations for single and product moments. The recurrence relationships allow for a rapid and efficient assessment of the means, variances and covariances for any sample size. Additionally, the paper outcomes can be boiled down to the traditional progressive type-II censoring. Also, some special cases are limited to some lifetime distributions as the exponentiated modified inverse Weibull and Kumaraswamy inverse exponential.



    加载中


    [1] N. Balakrishnan, R. Aggarwala, Progressive censoring: theory, methods, and applications, Springer Science & Business Media, 2000. http://doi.org/10.1007/978-1-4612-1334-5
    [2] N. Balakrishnan, Progressive censoring methodology: an appraisal, Test, 16 (2007), 211–259. http://doi.org/10.1007/s11749-007-0061-y doi: 10.1007/s11749-007-0061-y
    [3] U. Balasooriya, Failure-censored reliability sampling plans for the exponential distribution, J. Stat. Comput. Simul., 52 (1995), 337–349. https://doi.org/10.1080/00949659508811684 doi: 10.1080/00949659508811684
    [4] J. W. Wu, W. L. Hung, C. H. Tsai, Estimation of the parameters of the Gompertz distribution under the first failure-censored sampling plan, Statistics, 37 (2003), 517–525. https://doi.org/10.1080/02331880310001598864 doi: 10.1080/02331880310001598864
    [5] J. W. Wu, H. Y. Yu, Statistical inference about the shape parameter of the Burr type XII distribution under the failure-censored sampling plan, Appl. Math. Comput., 163 (2005), 443–482. https://doi.org/10.1016/j.amc.2004.02.019 doi: 10.1016/j.amc.2004.02.019
    [6] S. J. Wu, C. Kuş, On estimation based on progressive first-failure-censored sampling, Comput. Stat. Data Anal., 53 (2009), 3659–3670. https://doi.org/10.1016/j.csda.2009.03.010 doi: 10.1016/j.csda.2009.03.010
    [7] A. A. Soliman, A. H. A. Ellah, N. A. Abou-Elheggag, A. A. Modhesh, Estimation from Burr type XII distribution using progressive first-failure censored data, J. Stat. Comput. Simul., 83 (2013), 2270–2290. https://doi.org/10.1080/00949655.2012.690157 doi: 10.1080/00949655.2012.690157
    [8] M. Dube, R. Garg, H. Krishna, On progressively first failure censored Lindley distribution, Comput. Stat., 31 (2016), 139–163. https://doi.org/10.1007/s00180-015-0622-6 doi: 10.1007/s00180-015-0622-6
    [9] E. A. Ahmed, Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application, J. Appl. Stat., 44 (2017), 1576–1608. https://doi.org/10.1080/02664763.2016.1214692 doi: 10.1080/02664763.2016.1214692
    [10] T. Kayal, Y. M. Tripathi, L. Wang, Inference for the Chen distribution under progressive first-failure censoring, J. Stat. Theory Pract., 13 (2019), 52. https://doi.org/10.1007/s42519-019-0052-9 doi: 10.1007/s42519-019-0052-9
    [11] M. A. W. Mahmoud, M. G. M. Ghazal, H. M. M. Radwan, Bayesian estimation and optimal censoring of inverted generalized linear exponential distribution using progressive first failure censoring, Ann. Data Sci., 10 (2023), 527–554. https://doi.org/10.1007/s40745-020-00259-z doi: 10.1007/s40745-020-00259-z
    [12] M. S. Kotb, A. Sharawy, M. M. M. El-Din, E-Bayesian estimation for Kumaraswamy distribution using progressive first failure censoring, Math. Modell. Eng. Probl., 5 (2021), 689–702. https://doi.org/10.18280/mmep.080503
    [13] M. H. Abu-Moussa, N. Alsadat, A. Sharawy, On estimation of reliability functions for the extended Rayleigh distribution under progressive first-failure censoring model, Axioms, 12 (2023), 680. https://doi.org/10.3390/axioms12070680 doi: 10.3390/axioms12070680
    [14] R. Aggarwala, N. Balakrishnan, Recurrence relations for single and product moments of progressive type-II right censored order statistics from exponential and truncated exponential distributions, Ann. Inst. Stat. Math., 48 (1996), 757–771. https://doi.org/10.1007/BF00052331 doi: 10.1007/BF00052331
    [15] M. M. El-Din, A. Sadek, M. M. M. El-Din, A. M. Sharawy, Characterization for Gompertz distribution based on general progressively type-II right censored orderstatistics, Int. J. Adv. Stat. Probab., 5 (2017), 52–56. https://doi.org/10.14419/ijasp.v5i1.7524 doi: 10.14419/ijasp.v5i1.7524
    [16] M. M. El-Din, A. Sadek, M. M. M. El-Din, A. M. Sharawy, Characterization of the generalized Pareto distribution by general progressively type-II right censored order statistics, J. Egypt. Math. Soc., 25 (2017), 369–374. http://doi.org/10.1016/j.joems.2017.05.002 doi: 10.1016/j.joems.2017.05.002
    [17] A. Sadek, M. M. M. El-Din, A. M. Sharawy, Characterization for generalized power function distribution using recurrence relations based on general progressively type-II right censored order statistics, J. Stat. Appl. Probab. Lett., 5 (2018), 7–12. http://doi.org/10.18576/jsapl/050102 doi: 10.18576/jsapl/050102
    [18] M. M. M. El-Din, A. M. Sharawy, Characterization for generalized exponential distribution, Math. Sci. Lett., 10 (2021), 15–21. https://doi.org/10.18576/msl/100103 doi: 10.18576/msl/100103
    [19] H. M. Alshanbari, A. A. A. H. El-Bagoury, A. M. Gemeay, E. H. Hafez, A. S. Eldeeb, A flexible extension of pareto distribution: properties and applications, Comput. Intell. Neurosci., 2021 (2021), 9819200. https://doi.org/10.1155/2021/9819200 doi: 10.1155/2021/9819200
    [20] A. Z. Afify, A. M. Gemeay, N. M. Alfaer, G. M. Cordeiro, E. H. Hafez, Power-modified kies-exponential distribution: properties, classical and Bayesian inference with an application to engineering data, Entropy, 24 (2022), 883. https://doi.org/10.3390/e24070883
    [21] H. M. Alshanbari, A. M. Gemeay, A. A. A. H. El-Bagoury, S. K. Khosa, E. H. Hafez, A. H. Muse, A novel extension of Fréchet distribution: application on real data and simulation, Alex. Eng. J., 61 (2022), 7917–7938. https://doi.org/10.1016/j.aej.2022.01.013 doi: 10.1016/j.aej.2022.01.013
    [22] N. Alsadat, A. Ahmad, M. Jallal, A. M. Gemeay, M. A. Meraou, E. Hussam, et al., The novel Kumaraswamy power Frechet distribution with data analysis related to diverse scientific areas, Alex. Eng. J., 70 (2023), 651–664. https://doi.org/10.1016/j.aej.2023.03.003
    [23] G. Aryal, I. Elbatal, Kumaraswamy modified inverse Weibull distribution: theory and application, Appl. Math. Inf. Sci., 9 (2015), 651–660. http://doi.org/10.12785/amis/090213 doi: 10.12785/amis/090213
    [24] J. S. Hwang, G. D. Lin, Extensions of Muntz-Szasz theorem and applications, Analysis, 4 (1984). 143–160. https://doi.org/10.1524/anly.1984.4.12.143
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(979) PDF downloads(53) Cited by(2)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog