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1. Introduction

In industrial and reliability experiments, it is important to save cost and money when observing
the product’s failure time. Censoring is the most suitable technique for achieving this aim through the
lifetime experiments, where we observe some lifetimes or failure times and not all the lifetimes of the
units under the test. There are different methods of censoring. One of the most popular types of
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censorship is type-II censoring where n items are placed on the lifetime test and the test is continued
until the occurrence of the m‘" failure time, where 1 < m < n. Progressive censoring of type-II
(PTIIC) is the modified version of type-II censoring, where researchers can exclude some of the
survived units during the experiment running. PTIIC can be explained as follows: Assume that n units
are subjected to a lifespan test, and that m failures will be detected by the test’s completion. When the
initial failure occurs, R, of the survived units are chosen at random and excluded from the test, when
the second failure happens, R, of the survived units are chosen at random and excluded from the test.
This process will continue until the m*" failure is obtained at that time the remaining survived units
(n—m—R; — R, — -+ — R,;;) are removed from the test. For extensive reading about PTIIC see [1,2],
where they presented a variety of progressive censorship features.

When the lifespan of an item is relatively ongoing and its testing establishments are few, but the
testing units are inexpensive, one can test n X k units by storing them in sets of &, with each group
tested as one unit. The lifespan test is then run by testing each of these unit sets separately until the
point at which each set has its first failure. First-failure censoring is the term for this type of censorship,
which was first developed by Balasooriya [3]. Different authors have conducted the study of the first-
failure censoring, such as Wu et al. [4] and Wu and Yu [5]. Blending the first-failure censoring and
PTIC will result in the PFFC scheme, in which we test groups of units with the privilege of removing
some survived groups of units during the test operation; this was contributed by Wu and Kus [6].
Different works have discussed the concept of PFFC; see [7-13].

PFFC can be described as follows: Suppose a lifetime test is administered to n separate groups
(R1,Rs,.
1:Trll:n?k
group exhibiting the first failure are arbitrarily eliminated from the test. At the occurrence of the second

(R1,Rz,.
X

2m:nk

with k items in each group. Upon the occurrence of the first failure X "’Rm), R; groups and the

failure "‘Rm), R, groups and the group exhibiting the second failure are arbitrarily eliminated

from the test and so on until the m" failure Xéﬁﬁ;‘};ﬂm) is occurred. The unobserved groups

Rm =n—m—R1—R2—"'—Rm_1
are eliminated from the test. Then

X(Rl'RZ:---'Rm) < e <X(R1,R2,...,Rm)

1:m:nk mm:m,k

are called PFFC sample with the censoring scheme (R4, R, ..., R;,), where n = m + Y./, R;. Suppose
that the failuretimes of the n X k units under the test follow a continuous distribution with CDF F(x)
and PDF f(x), then the joint pdf for (X (RuRz-Rm) ¥ (Rl‘Rz""’Rm)) is defined as follows:

1mink e Amimink
T e Xomemen 10 X25 w0y Xm) = TIonm 1) K™ [ 1124 FEDFx)IVE0 < xq <o < xpy < o0, (1.1)
where,
Inm-1y=n(m—R; —1)..(n—Ry =R, ——Rpp_y —m+1),
N; = kR; + k — 1.

In mathematical statistics, recurrence relations are of great use in variety of domains as they reduce
the number of direct computations quite considerably. They are also useful in obtaining the moment
generating functions, moments and in characterizing distributions. Different authors have discussed
the recurrence relations with characterizations: Aggarwala and Balakrishnan [14] obtained the RR for
both product and single moments of PTIIRC from exponential distribution; El-Din et al. [15,16]
derived RR of moments of the Gompertz and generalized Pareto distributions based on general PTIIRC
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with characterizations; Sadek et al. [17] discussed the characterization and the RR based on general
PTIIRC; and El-Din and Sharawy [18] derived RR for the generalized exponential distribution based
on general PTIIRC. However, no studies about the RR under the PFFC exist in the literature. In this
paper, we derive the RR and characterizations for the KMIWD based on PFFC.

A new contribution for enhancing the existing distributions has been added to the literature (see
for example [19-22]). In 2015, Aryal and Elbatal [23] proposed a new modified distribution called the
KMIWD. This is an extremely flexible model that approaches different distributions with different
parameters. It has many applications in engineering, computer sciences and hydrology. The PDF of

the KMIWD is given by
Jexo|-a(E+ )| {1-em [ C+ )} a2

6
f(x,a,b,a,B,0) =ab (% + xafl
where,

a,b,a,B,6 >0,x > 0.

The corresponding CDF of KMIWD is given by

F(x,a,b,a,B,0) =1— {1 —exp [—a (g + %)]}b. (1.3)
The relation between (1.2) and (1.3) is given by
{exp [a (g + x%)] — 1}f(x) =ab (% + xi‘il) [1-F()]. (1.4)

Many existence distributions can be obtained from the KMIWD by changing its parameters as
follows in Table 1.

Table 1. Subdistributions that can be obtained from KMIWD.

Case Values of parameters Distribution

1 b=1 exponentiated modified inverse Weibull

2 o=2 Kumaraswamy modified inverse Rayleigh
3 o=1 Kumaraswamy inverse exponential

4 p=0 Kumaraswamy inverse Weibull

5 a=1 and b=1 the modified inverse Weibull

6 a=1, b=1 and =0 the inverse Weibull

The i*" single moment for X g:mm i based on the PFFC is defined as follows

NiyoosNpp) @ Ny, ooNp) . _
‘uf(l:ril:n,k . =k [X(Siﬂll:n,k )] = I(n,m—l) fff xll]kmf(xl)[F(xl)]Nl
0<x1<-- <Xy <00

X f () [F(x)]"2 ... f ) [F () 1V mdxy .. dxy, (1.5)

while the i*" and r** product moment for Xg.m.n s and Xemmx (Xgammkx < Xsmmi) based on the
PFFC has the following definition:
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(Np,os Ny )BT (N, Npp)E o (N1,eN)T] i Jrm
Hgsmmnk =E Xq:m:n,k Xs:m:n,k - I(n.m—l) e XqXs k
0<x1 < <Xy <00

X f Qe [F eV f (e [F (e) 12 . f Qo) [F (o) 1Mty .. diti (1.6)

Our paper is motivated by the unfortunate lack of literature on recurrence relations and
characterization based on the PFFC, particularly under a significant and general distribution like the
KMIWD. This is how the rest of the article is organized: In Section 2, both the single and product RR
are obtained based on the PFFC. The characterizations are analyzed in Section 3. Finally, Section 4
concludes the proposed work in this article.

2. Recurrence relations of progressive first failure censoring

In this section, we propose the single and product RR of KMIWD based on PFFC. In Theorem 2.1,
we propose the recurrence relation associated with the single moment of PFFC.

Theorem 2.1.For2 <r<m-—1,m<nandi = 0, then

[o¢]

Z Z (i — D(ap)*(ad)! H(Nl,...,Nm)(i_h_‘”) _ (-1 ,..N®

abh!' ! rm:nk ab rm:nk

h=01=0

—(n—Rl—---—Rr_l—T+1)

rmmnk

N.+1 ) Ny, Nyy) (E=@2)
2

i—a— rmmnk

(i-1)
+B(N,. + 1)pNalNm) Uy Oa(i—1) (

[ﬁﬂ(wl.....Nr_z.(Nr_l+Nr+1).Nr+1,...,Nm)“‘1) +(l_ LL (Nl,...,Nr_z,(Nr_i+Nr+1),Nr+1.....Nm)<"‘“‘2)]

r—-1m-1nk i—a—2 “r—l:m—l:n,k
+(mn—Ry——R.—T1)

(N1, Nr 2, Ny 4 Ny 1+ D Ny Nep) 0 (G2)0@ ) (N Ny, (N + N1 +1) N ) 7672 2]
IB‘ur:m—l:n,k i—q—2 Trm-1nk ' ( : )

Proof. From (1.4) and (1.5), we get

o oo

Z (@p)"(@ad) .- 1y O

s £ abh!'l! rimmnk ab rmmnk

~ Ty [[ KW, (1, ) o fCDIF GO o f ()
0<x1 <+ <Xy <Xpp1 <+ <Xy <0

X [F(xr—l)]Nr_lf(xr+1)[F(xr+1)]Nr+1 f(xm) [F(xm)]mel dxr—ldxr+1 dxm: (2-2)

where,

r 1 0 -
Wi Geron, pen) = 770k (G + i) [FGe] ¥+, 2.3)

Xr—1 X

Using integrating by parts, we get
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B [F Oery DN = B T3 [F ()]
i—1
Oax; 39 2 [F Cors )N — B, 2 [F ()]

i—a—2

+ (FE2) [ f Q) [F ()] Ve, + 250 (X4 a2 £ (0 )[F (x,) ety (24)

i-1

Wy (o1, Xp41) =

By substituting the obtained expression of W, (x,_1, X,-4+1) from (2.4) in (2.2) and simplifying,
yields (2.1). This brings the proof to a close.
In the coming theorems, we discuss the product moments of PFFC.

Theorem 2.2. For 1 <r<s<m-1m<nandi,j =0,

[ee] (o]
(i — 1) (ap)"(ad) Ny Ny Ghmatd)  (E—= 1) (y, N @D (N1, Npp) 1)

z z h!' ! 'ur:rrll:n,km = ab Mr,s?m:n,r;cl + ﬁ(NT + 1>l“r,5?m:n,rli1

h=0 [=0

] N, +1 No o N )=o)

+9a(l - 1) (m) 1(”,5?7’n:’n,rl?) - (Tl - R1 — e — Rr—l —-r+ 1)

X (N1,.0Nr—2,(Np— 1 +Np+1),Nyy 1,...Npp) 1) + (i—1)6a (Nq,eeoNp—2,(Ny—q +Np+1),Nyy1,...Nppy ) G~ %21

ﬁur—l,s—l:m—l:n,k i—a—2 r—1,s—-1:m-1nk

+(n_R1_R2_“'_Rr_T')

e ety AN A N EL)

From (1.6), we get

oo 0o

(aﬁ)h(ag)l (Nq,...Ny) G—h—al)) 1 (N1, Nyy) &9
h i Hrmin,ke - %Hr:m:n,k
h=01=0 o
= [F(xr—l)]Nr_lf(xr+1)[F(xr+1)]Nr+1 f(xm) [F(xm)]dexl ---dxr—ldxr+1 dxm(26)

Substituting by the obtained expression of W; (x,_1, X,4+1) from (2.4) in (2.6) and simplifying,
yields (2.5). This brings the proof for a close.

Theorem 2.3.For 1 <r<s<m-1m<nandi,j=>0,then

(Nll"-INm)(i'j_l)

O G- D@ (@)t N Gimhmad (= 1) D
z Z h :ur:r:l:n,k = ab 'uT:T:l:Tl,k + iB(NS + 1)'ur,s:m:n,k
h=0 1=0
) Ng +1 Ny (BJ—@=2)
+0a(j — 1) (ﬁ)uﬁﬁ};n:ﬁk) —(n—Ry,——Ry_;—s+1)

x | g N2 s ANHDNs - N) 71 U= DO 0y, Vg (N g NG+ 1) Ny M) )
Hr,s—l:m—l:n,k ] —a—-2 rs—1m-1nk
+(n_Rp+1_Rp+2_"'_RS_S)

B (N1,esNs—1,(Ng+Ng41+1),Ngp,.sNyp ) I~ n U —1Doa (N1,uNg—1,(Ns+Ngy1+1),Noy2,.aNppy ) BT —2=2)
nur,s:m—l:n,k ] —a—2 r,sm—-1nk .
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Proof. The proof can easily derived similarly as in Theorem 2.2.
3. Characterizations

During this section, we proposed the characterization of the KMIWD depending RR for PFFC.
3.1. Characterizations via differential equation for KMIWD

In Theorem 3.1, we discuss the characterization of the KMIWD.

Theorem 3.1. Let X be a continuous variable with [F(-) = 1 — F(.)]. Then X has KMIWD iff
6 fa

{exp [a (g + —a)] — 1}f(x) =ab (% + xa+1) [F(x)],x = 0. (3.1)

X

Proof. Necessary direction: From (1.2) and (1.3), we can easily obtain (3.1).
Sufficiency direction: Suppose that (3.1) is true, then we get

_dF_[F(x)] ~ ab (J'C‘LZ + xiiﬂ) e ab (3’% + x?;ﬁ) ex [—a ('fci + 9%)] .

O b 2

By integrating, we get
_ 0
—In|F(x)| = —bIn |1 —exp [—a (g + x_)” + C,

where C is an arbitrary constant.
Now, we get C = 0, when x = 0.
Therefore,

In|F(x)| =In {1 —exp [—a <§ + %)]}b
Hence,
F(x)=1- {1 —exp [—a (g + :%)]}b

Which is the CDF of KMIWD. This brings the proof to a close.
3.2. Characterization via single moment of KMIWD

In Theorem 3.2, we discuss the characterization of the KMIWD depending on the single moment
of PFFC.

Theorem 3.2. With a survival function [F(-)], let X be a continuous random variable where X7:n<X2:n
<...<Xu:n be a random ordered sample with size n. Then X has KMIWD iff for2<r<m—-1,m<n
andi > 0,

AIMS Mathematics Volume 9, Issue 1, 481-494.
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i i (= DGR ou e L LT 00 g, + ™
h=01=0

Tt L A U SO S

o e S L i’!z;;;fif;i;,i”m*””“'”r*l""”m)“'“'”]
+(n—Ry——R,—T)

[ ﬁugv%,:,lzy&l,(zvr+zvr+1+1).Nr+2,...,1vm)(i-1> N (:[—)_6: iﬁl.iz:v’:;,(lvﬁzvrﬂ+1),Nr+z,.-.,1vm)(i‘“‘2)]_ (32)

Proof. Necessary direction: Theorem 2.1 provides the proof for the necessary side for this theorem.
Sufficiency direction: Assume that X be a random variable has a continous PDF f(-) and CDF

F().
Let (3.2) is satisfied, then we have:
Z (@B)*(@8)" wy.i)had _ 1 vy, )@ +B (Nr + 1) (NN D)
s £ h'll rmnk ab rmmnk i—1 rmmnk
N, +1 _ _q)(i-a-2)
toa (z—ra——z) Vot (=R = =Ry —7+1)
[ ‘B (Nlr---rNr—ZJ(Nr—l+NT+1):NT+1»---Nm)(i_1) + Oa (Nl,...,Nr_z,(Nr_l+Nr+1),Nr+1,...Nm)(i_“_2)
i—1 r—1m-1nk i—a—2 r—1m-1nk
+(n—Ry——R,—T)
I:i (Nlﬁ""NT—lﬁ(NT+NT+1+1)'NT+2!'"!Nm)(i_1) ba (Nlﬁ'-"NT—ll(NT+NT+1+1)'NT+2!'"!Nm)(i_a_2):| (3 3)
i—1 rm-1nk i—q—2"Trm-1nk ’ :
where,

(N ,...,Nm)(i_l) —
W™ =ty [ | W g, ) GO PG
0<x < <Xy <Xy <+ <Ay <O

X f(xr—1)[F(xr—ﬂ]]vr_lf(xrﬂ)[F(xr+1)]N”1 ---f(xm)[ﬁ(xm)]lvmdﬁ e Xy 1A%y q Aoy, (3.4)

where,
Wo o1, %) = [0 207 f G F (el (3.5)

By integrating (3.5) by parts, we obtain

-1 P 1 - i—1
R BG4 TP G 4 g

Xr+1 _
| RGP,
X

r—1

Wo(Xp_1, Xp41) =

Now by substituting in Eq (3.4), we get
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Ny N0 11 f f f m
U . 1 k f(xl)
rmink N +1 lam-1 0<x] <o o KX g <A <o gy OO
_ Xr+1 . _ _
xwwaWaJ" X2 [F )Mty £ () [F ()] Ve
Xr—1

f(xr+1) [F(xr+1)]Nr+1 f(xm) [F(xm)]dexl dxr—ldxr+1 dxm

I
e || KR Cey)
+ 0<x1 < <Xy <Xpp1 <+ <Xy <00

X [F Q)™ oo f Copo ) IF Qoo )]V M f ()
X [F(xr+1)]NT+1 ---f(xm)[ﬁ(xm)]dexl ---dxr—ldxr+1 dxm

I(n,m—l)

NT I 1 ff L<x1<---<xr_]<xr+]< <x1n<c:

X [F e oo f Ger—) [F Germ )12 f ()
X [F(xr+1)]NT+NT+1+1 f(xm) [F(xm)]dexl dxr—ldxr+1 dxm

i—1
P o e
(nm )Nr +1 0<y < <X g <y g <o <Xy OO

xm@mmmj”}wFQMM“mmuFMHMJWH

Xr—1

f ) [F Cerp DIV L f () [F () IVmdxy o dx_1d Xy o dX

m—Ry——R,—71) #(Nl,...,NT_l,(NT+NT+1+1),NT+2,...Nm)(i_1)
Nr +1 rm-1nk

_ (n=Ry—=Rp_1=7+1) (Ny,..Nr—2,(Ny—1+ Np+1),Ny41,... Ny ) ™D (3.7)
Ny+1 r—1m-1nk .

and

(Ny,ok Ry +k—1)—a=2) — i—a-—1 m
ur:m:n,k nm-1)"7,p 1 1, kR Tk
0<xX <+ <Xy <Xy <+ <Xy <0

Xf@JH—F@MMHJWH#”*WQJW”%Mf@pﬂ

X [F(xr—l)]Nr_lf(xr+1) [F(xr+1)]Nr+1 f(xm) [F(xm)]dexl dxr—ldxr+1 dxm

m—Ry——R.—1) ﬂ(Nl,...,Nr_l,(Nr+Nr+1+1),Nr+2,...,Nm)(i‘“‘2)
Nr +1 rm-1nk

_ (n=Ry—=Rp_1=T+1)  (Ny,..Ny—3,(Npq1+Np+1),Nyg 1,0 Ny ) %2 (3.8)
Ny+1 r—1m-1nk ' :

(i-1)
Now by substituting for ugvnll’:;l",l,\c’m) " and 1(”1\;11 nl,\c]m) from (3.7) and (3.8) in (3.3), we obtain
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(aB)"(ad)  (w,,..Np)-h-aD
fm- ”ﬂ j [Z TR M —H e
0<x7<-+<xy <00

X FGDIF DI v f (oD IF G DIV F G IF oI G ) IF Gty )11
X f Com) [F Gt Ml .. dit

(B Oa —
= Itnm-1)@6? ff . f xt (—2 + a+1) k™ f () [F (x)]M ...
0<xy <+ <Xy <00 Xy Xr

X f (er - [F Cer- )1V [F ) IV f Gy DIF Cera DIV f Qo) [F Gen)] ity . dty.

We get

r

I(n,m—l) fff xf*f(xr)[ﬁ(xr)]lvr-l-lkm
0<x1 <+ <Xy <00

x {{exp E (§ + %)] -1} r ) - (% .
X (e D [F e DIV f Gtpy ) IF Gepye DIV o f o) [F o) 1Vmdxy . dx,
=0.

=) [F(xr)]}f(x1)[F(x1)]N1

Using Muntz-Szasz theorem in [24], we get

e o 2] e = (& + e

By Theorem 3.1, we obtain

F@ =1-{1-ew[-a(E+ D)

Which is the CDF of KMIWD. This brings the proof to a close.

Special cases:

(1) This theorem is going to hold for the PTIIRC when k = 1,

AIMS Mathematics

Z (@) (@) (r,,.mmad _ 1 oy, )@ +ﬁ<Rr+1) (R Ri) =D

e £ abh' l' ﬂr:m:n - ab .ur:m:n l _ 1 Mr:m:n
R + 1 R+ ..R (i-a-2)
+0a (l_ra—_z) pyiFon) —(n—R = =Ry —7+1)
B 'u(Rl,...,Rr_l+Rr+1,...,Rm)(i_1) + Oa H(Rl JRy—1+Ry+1,...Rpy) =~ 2)]
i—1 r—1m-1n i—a—2 r—1m-1:n
+(n_R1_R2_"‘_Rr_T)
B (Riyoo(Rr+Ryy1+1,...Rpp) D) n Oa (RiyooRy+Ryg1 41, Ry G2 2)
i—1 rm-1mn i—a—2 rm-1mn )
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(2) Fork =1andr =m,

Z @P)"(@d)t (g, .r,)i-h-ad 1 Ry R® np (Rm + 1) (RypoRpy) =D

- i abh!l! mmn qp ! mimin i—1 mm:n
R,+1 Re . R.(i—a=2)
0 (P2 it 0 Ry Ry =D
B (RioRims tRm+D)ED + B Ry R +Rp1)EED)
i — 17 m-Lm-1n i—aq—2 U Zim—-1mn .

(3) Fork=1and2<m<n,

b £ abh!l! Lm:n T ab Himmn 1 Lmen
Ry +1 Ry =@=2)
40 (= )l - - Ry - 1)
L ((R1+Rz+1),R3,..Ry) 1) +0—a (RetRy + 1) R Ry (=D
i—1 Him-1m i —q— 2" 1m-1n .
ork=1 m=1landn=1,2,..,
4) Fork =1 landn = 1,2
(aﬁ)h(ae)l (n_l)(i—h—lll) _ 1 (Tl—l)(i) ﬁ (n_l)(i—l) ea
2.0 e M =g+ () (o
(5) Fork=1, m=1n=1andR, =--=R,, =0,
Z M (i-h—-al) — ﬂ(i) n ﬁll(i_l) + O M(i—“—Z)
h=0 1=0 abh' l' ‘Ll ab l —_ 1 l —a— 21

using Theorem 3.1 we get

oo oo

(=D a8(h + D] Blal —1i)! falal + a —i—1)!

z (@B)*(ad)' (g, .rpt-r-ad 1 (g po® N ﬁ(R1+1> (R Ri) D)

B(x') = ab! Z U (b—h—1)! |[aBh+ DI [af(h + D]a+at

h=01=0
The mathematical expectation, variance, skewness and kurtosis of the KMIWD:
Mean(X) = E(x),
Variance(X) = E(x?) — E?(x),
E(x3®) —3E(x)E(x?) + 2E3(x)

Skewness(X) = 3
Varz(x)
E(x*) —4E(xX)E(x®) + 6E(x®)E%(x) — 3E*(x)

Kurtosis(X) = Var?(x)

3.3. Characterizations via product moments of KMIWD

In this subsection, we characterize the KMIWD using product moments of PFFC.

(n-1) (i-a-2)

AIMS Mathematics Volume 9, Issue 1, 481-494.
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Theorem 3.3. Let X is a continuous random variable has a survival function [F(*)]. Let Xi:n<... <Xun
be a random ordered sample of size n. Then X has KMIWD iff, for1 <r <s<m-—1, m <nand
i,j =0,

(i = D@ (@0 (ymmyiheatd _ (= 1) vy @
£ £ !l rim:mn,k - ab r.ssm:nk

N, +1 ) (N, Nypy) (= 0=20)
2

r.ssmn,k

@i-1))
+BN, + Dl im T 1)0a<

-M—Ry——Ry_;—7+1)

% 'BM(Nl,...,NT_Z,(Nr_l+Nr+1),NT+1,...Nm)(i_1'j) n (i—1Dba (Nl,...,Nr_z,(Nr_l+NT+1),NT+1,...,Nm)(i_“_z'j)l

r—-1,s—-1m-1nk i—a—2 r—1,s—1:m-1:nk

+(n—Ry—-—R,—T)

B (N1,eNy—1,(Np+Nyy1+1),Nyg 20N )LD (=100 (Nq,...Ny—1,(Ny+ Ny 1 +1),Nyg 2, Ny ) E=E=21) (3.10)
'ur,s—l:m—l:n,k i—q—2 Urs—-1m-1nk : :

Proof. Necessary direction: Theorem2.2 leads to prove the necessary side for this theorem.
Sufficiency direction: The proof is easily obtained as in Theorem 3.2, we derive the CDF of
KMIWD as follows

b

F =1-fi-em o+ )]
xX) = exp|-al-+ 2| -
That is the CDF of KMIWD and the proof is now complete.

Theorem 3.4. Let X be a random continuous variable having a survival function [F(+)]. Let X7:n<X2:n
<...<Xu:n be a random ordered sample with size n having KMIWD iff, for 1 <r <s<m—-1 m<
nandi,j =0,

O G- D@ @)t o) Gimhmad (= 1) oy G (NayveaNg) =D
Z Z , = 'ur:nll:n,k + ﬁ(NS + 1)#r,s?m:n,k
h=01=0

il Tk ab
] N +1 Ny, Ny (bJ=@=2)
+(j — Dba (}_—2) (Nl —(n—Ry— =Ry —s+1)
X B (N1+sNs—2,(Ns—1+Ns+1),Ns1,0:-Np) /=1 + M (N1,--sNs—2,(Ns—1 +Ng+1),Ng 4 1,..Np) &I =%=2)
/'tr,s—l:m—l:n,k ] —a -2 r,s—1m-1nk
+(n_R1_R2_"'—RS—S)

(N1,.sNs—1,(Ns+Ng 1+ 1), Nsy 2N ) H™D (G=1)0a  (Ny,..,Ng—1,(Ns+Ng41+1),Ng 2,00 No) BI=E2)
lglur,s:m—l:n,k + j—a—2 Frsm-1lnk . (3.11)

Proof. Necessary direction: Theorem 2.3 leads to prove the necessary side for this theorem.
Sufficiency direction: The proof is easily obtained as well as in Theorem 3.2 we get the CDF of

KMIWD as follows
Fw=1-fi-ew[-a(t+ 5
x) = exp|—a < Ta )
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That is the CDF of KMIWD and the proof is now complete.
4. Conclusions

In this research, some Recurrence relationships for single moments and for product moments of
the PFFC data from the KMIWD have been established. Further, the characterization of the KMIWD
have been studied. The results showed that for all censoring techniques and sample sizes, we can easily
and recursively acquire both the single and product moments of any PFFC with direct computations
which saves time, money and effort. Recurrence relationships for the product and single moments for
different special cases have been obtained as the case of the progressive type-II censoring. Also, this
work can be reduced to a special distribution, as shown in Table 1.

Use of Al tools declaration

The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this
article.

Acknowledgments

We extend our gratitude to the referees for their useful comments which helped in improving the
paper. Also, this research is supported by researchers supporting project number (RSPD2023R548),
King Saud University, Riyadh, Saudi Arabia.

Conflict of interest
There are no conflicts of interest declared by the authors.

References

1. N. Balakrishnan, R. Aggarwala, Progressive censoring: theory, methods, and applications,
Springer Science & Business Media, 2000. http://doi.org/10.1007/978-1-4612-1334-5

2. N. Balakrishnan, Progressive censoring methodology: an appraisal, 7est, 16 (2007), 211-259.
http://doi.org/10.1007/s11749-007-0061-y

3. U.Balasooriya, Failure-censored reliability sampling plans for the exponential distribution, J. Stat.
Comput. Simul., 52 (1995), 337-349. https://doi.org/10.1080/00949659508811684

4. J.W.Wu, W. L. Hung, C. H. Tsai, Estimation of the parameters of the Gompertz distribution under
the first failure-censored  sampling plan,  Statistics, 37  (2003), 517-525.
https://doi.org/10.1080/02331880310001598864

5. J.W.Wu, H. Y. Yu, Statistical inference about the shape parameter of the Burr type XII distribution
under the failure-censored sampling plan, Appl. Math. Comput., 163 (2005), 443-482.
https://doi.org/10.1016/j.amc.2004.02.019

6. S.J. Wu, C. Kus, On estimation based on progressive first-failure-censored sampling, Comput.
Stat. Data Anal., 53 (2009), 3659-3670. https://doi.org/10.1016/j.csda.2009.03.010

AIMS Mathematics Volume 9, Issue 1, 481-494.


http://doi.org/10.1007/978-1-4612-1334-5
http://doi.org/10.1007/s11749-007-0061-y
https://doi.org/10.1080/00949659508811684
https://doi.org/10.1080/02331880310001598864
https://doi.org/10.1016/j.amc.2004.02.019
https://doi.org/10.1016/j.csda.2009.03.010

493

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. A. Soliman, A. H. A. Ellah, N. A. Abou-Elheggag, A. A. Modhesh, Estimation from Burr type
XII distribution using progressive first-failure censored data, J. Stat. Comput. Simul., 83 (2013),
2270-2290. https://doi.org/10.1080/00949655.2012.690157

M. Dube, R. Garg, H. Krishna, On progressively first failure censored Lindley distribution,
Comput. Stat., 31 (2016), 139—163. https://doi.org/10.1007/s00180-015-0622-6

E. A. Ahmed, Estimation and prediction for the generalized inverted exponential distribution
based on progressively first-failure-censored data with application, J. Appl. Stat., 44 (2017),
1576—1608. https://doi.org/10.1080/02664763.2016.1214692

T. Kayal, Y. M. Tripathi, L. Wang, Inference for the Chen distribution under progressive first-
failure censoring, J. Stat. Theory Pract., 13 (2019), 52. https://doi.org/10.1007/s42519-019-0052-9
M. A. W. Mahmoud, M. G. M. Ghazal, H. M. M. Radwan, Bayesian estimation and optimal
censoring of inverted generalized linear exponential distribution using progressive first failure
censoring, Ann. Data Sci., 10 (2023), 527-554. https://doi.org/10.1007/s40745-020-00259-z

M. S. Kotb, A. Sharawy, M. M. M. El-Din, E-Bayesian estimation for Kumaraswamy distribution
using progressive first failure censoring, Math. Modell. Eng. Probl., 5 (2021), 689-702.
https://doi.org/10.18280/mmep.080503

M. H. Abu-Moussa, N. Alsadat, A. Sharawy, On estimation of reliability functions for the
extended Rayleigh distribution under progressive first-failure censoring model, Axioms, 12 (2023),
680. https://doi.org/10.3390/axioms 12070680

R. Aggarwala, N. Balakrishnan, Recurrence relations for single and product moments of
progressive type-II right censored order statistics from exponential and truncated exponential
distributions, Ann. Inst. Stat. Math., 48 (1996), 757-771. https://doi.org/10.1007/BF00052331
M. M. EI-Din, A. Sadek, M. M. M. EI-Din, A. M. Sharawy, Characterization for Gompertz
distribution based on general progressively type-II right censored orderstatistics, Int. J. Adv. Stat.
Probab., 5 (2017), 52-56. https://doi.org/ 10.14419/ijasp.v5il.7524

M. M. EI-Din, A. Sadek, M. M. M. El-Din, A. M. Sharawy, Characterization of the generalized
Pareto distribution by general progressively type-II right censored order statistics, J. Egypt. Math.
Soc., 25 (2017), 369-374. http://doi.org/10.1016/j.joems.2017.05.002

A. Sadek, M. M. M. El-Din, A. M. Sharawy, Characterization for generalized power function
distribution using recurrence relations based on general progressively type-II right censored order
statistics, J. Stat. Appl. Probab. Lett., 5 (2018), 7-12. http://doi.org/10.18576/jsapl/050102

M. M. M. El-Din, A. M. Sharawy, Characterization for generalized exponential distribution, Math.
Sci. Lett., 10 (2021), 15-21. https://doi.org/10.18576/msl/100103

H. M. Alshanbari, A. A. A. H. El-Bagoury, A. M. Gemeay, E. H. Hafez, A. S. Eldeeb, A flexible
extension of pareto distribution: properties and applications, Comput. Intell. Neurosci., 2021
(2021), 9819200. https://doi.org/10.1155/2021/9819200

A. Z. Afify, A. M. Gemeay, N. M. Alfaer, G. M. Cordeiro, E. H. Hafez, Power-modified kies-
exponential distribution: properties, classical and Bayesian inference with an application to
engineering data, Entropy, 24 (2022), 883. https://doi.org/10.3390/e24070883

H. M. Alshanbari, A. M. Gemeay, A. A. A. H. El-Bagoury, S. K. Khosa, E. H. Hafez, A. H. Muse,
A novel extension of Fréchet distribution: application on real data and simulation, Alex. Eng. J.,
61 (2022), 7917-7938. https://doi.org/10.1016/j.a¢j.2022.01.013

AIMS Mathematics Volume 9, Issue 1, 481-494.


https://doi.org/10.1080/00949655.2012.690157
https://doi.org/10.1007/s00180-015-0622-6
https://doi.org/10.1080/02664763.2016.1214692
https://doi.org/10.1007/s42519-019-0052-9
https://doi.org/10.1007/s40745-020-00259-z
https://doi.org/10.18280/mmep.080503
https://doi.org/10.3390/axioms12070680
https://doi.org/10.1007/BF00052331
https://doi.org/%2010.14419/ijasp.v5i1.7524
http://doi.org/10.1016/j.joems.2017.05.002
http://doi.org/10.18576/jsapl/050102
https://doi.org/10.18576/msl/100103
https://doi.org/10.1155/2021/9819200
https://doi.org/10.3390/e24070883
https://doi.org/10.1016/j.aej.2022.01.013

494

22. N. Alsadat, A. Ahmad, M. Jallal, A. M. Gemeay, M. A. Meraou, E. Hussam, et al., The novel
Kumaraswamy power Frechet distribution with data analysis related to diverse scientific areas,
Alex. Eng. J., 70 (2023), 651-664. https://doi.org/10.1016/j.a¢j.2023.03.003

23. G. Aryal, L. Elbatal, Kumaraswamy modified inverse Weibull distribution: theory and application,
Appl. Math. Inf. Sci., 9 (2015), 651-660. http://doi.org/10.12785/amis/090213

24. J.S. Hwang, G. D. Lin, Extensions of Muntz-Szasz theorem and applications, Analysis, 4 (1984).
143-160. https://doi.org/10.1524/anly.1984.4.12.143

. © 2024 the Author(s), licensee AIMS Press. This is an open access
AIMS AJMS Press  article distributed under the terms of the Creative Commons
> Attribution License (http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 1, 481-494.


https://doi.org/10.1016/j.aej.2023.03.003
http://doi.org/10.12785/amis/090213
https://doi.org/10.1524/anly.1984.4.12.143

