Research article

Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions

  • Received: 05 October 2023 Revised: 15 November 2023 Accepted: 19 November 2023 Published: 27 November 2023
  • MSC : 34A08, 34A12, 34B10

  • In this paper, we initiate the study of existence and uniqueness of solutions for a coupled system involving Hilfer fractional quantum derivatives with nonlocal boundary value conditions containing $ q $-Riemann-Liouville fractional derivatives and integrals. Our results are supported by some well-known fixed-point theories, including the Banach contraction mapping principle, Leray-Schauder alternative and the Krasnosel'skiǐ fixed-point theorem. Examples of these systems are also given in the end.

    Citation: Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon. Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions[J]. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013

    Related Papers:

  • In this paper, we initiate the study of existence and uniqueness of solutions for a coupled system involving Hilfer fractional quantum derivatives with nonlocal boundary value conditions containing $ q $-Riemann-Liouville fractional derivatives and integrals. Our results are supported by some well-known fixed-point theories, including the Banach contraction mapping principle, Leray-Schauder alternative and the Krasnosel'skiǐ fixed-point theorem. Examples of these systems are also given in the end.



    加载中


    [1] M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Modell., 318 (2015), 8–18. https://doi.org/10.1016/j.ecolmodel.2015.06.016 doi: 10.1016/j.ecolmodel.2015.06.016
    [2] G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics, Oxford: Oxford University Press, 2005.
    [3] H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, 2-fractional calculus, In: Fractional calculus and fractional processes with applications to financial economics, London: Academic Press, 2017, 12–22. https://doi.org/10.1016/b978-0-12-804248-9.50002-4
    [4] R. L. Magin, Fractional calculus in bioengineering, Danbury: Begell House Publishers, 2006. https://doi.org/10.1109/carpathiancc.2012.6228688
    [5] K. Diethelm, The analysis of fractional differential equations, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [6] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of the fractional differential equations, New York: Elsevier, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5
    [7] K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, New York: Wiley, 1993.
    [8] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [9] B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations. Inclusions and inequalities, Switzerland: Springer, 2017. https://doi.org/10.1007/978-3-319-52141-1
    [10] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. https://doi.org/10.1142/9069
    [11] B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, Singapore: World Scientific, 2021. https://doi.org/10.1142/12102
    [12] J. H. He, Fractal calculus and its geometrical explanation, Results Phys., 10 (2018), 272–276. https://doi.org/10.1016/j.rinp.2018.06.011 doi: 10.1016/j.rinp.2018.06.011
    [13] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [14] R. Kamocki, A new representation formula for the Hilfer fractional derivative and its application, J. Comput. Appl. Math., 308 (2016), 39–45. https://doi.org/10.1016/j.cam.2016.05.014 doi: 10.1016/j.cam.2016.05.014
    [15] K. M. Furati, N. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. https://doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009
    [16] H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
    [17] J. Wang, Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850–859. https://doi.org/10.1016/j.amc.2015.05.144 doi: 10.1016/j.amc.2015.05.144
    [18] E. Pourhadi, R. Saadati, J. J. Nieto, On the attractivity of the solutions of a problem involving Hilfer fractional derivative via measure of noncompactness, Fixed Point Theory, 24 (2023), 343–366. https://doi.org/10.24193/fpt-ro.2023.1.19 doi: 10.24193/fpt-ro.2023.1.19
    [19] F. H. Jackson, $q$-Difference equations, Am. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183
    [20] T. A. Ernst, Comprehensive treatment of $q$-calculus, Switzerland: Springer, 2012. https://doi.org/10.1007/978-3-0348-0431-8
    [21] V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7
    [22] W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, Proc. Edinb. Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/s0013091500011469 doi: 10.1017/s0013091500011469
    [23] R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Proc. Camb. Philos. Soc., 66 (1969), 365–370. https://doi.org/10.1017/s0305004100045060 doi: 10.1017/s0305004100045060
    [24] M. H. Annaby, Z. S. Mansour, $q$-Fractional calculus and equations, Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-30898-7
    [25] G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/cbo9780511526251
    [26] J. Ma, J. Yang, Existence of solutions for multi-point boundary value problem of fractional $q$-difference equation, Electron. J. Qual. Theory Differ. Equ., 92 (2011), 1–10. https://doi.org/10.14232/ejqtde.2011.1.92 doi: 10.14232/ejqtde.2011.1.92
    [27] C. Yang, Positive Solutions for a three-point boundary value problem of fractional $q$-difference equations, Symmetry, 10 (2018), 358. https://doi.org/10.3390/sym10090358 doi: 10.3390/sym10090358
    [28] C. Guo, J. Guo, S. Kang, H. Li, Existence and uniqueness of positive solutions for nonlinear $q$-difference equation with integral boundary conditions, J. Appl. Anal. Comput., 10 (2020), 153–164. https://doi.org/10.11948/20190055 doi: 10.11948/20190055
    [29] R. Ouncharoen, N. Patanarapeelert, T. Sitthiwirattham, Nonlocal $q$-symmetric integral boundary value problem for sequential $q$-symmetric integrodifference equations, Mathematics, 6 (2018), 218. https://doi.org/10.3390/math6110218 doi: 10.3390/math6110218
    [30] C. Zhai, J. Ren, Positive and negative solutions of a boundary value problem for a fractional $q$-difference equation, Adv. Differ. Equ., 2017 (2017), 82. https://doi.org/10.1186/s13662-017-1138-x doi: 10.1186/s13662-017-1138-x
    [31] J. Ren, C. Zhai, Nonlocal $q$-fractional boundary value problem with Stieltjes integral conditions, Nonlinear Anal. Model., 24 (2019), 582–602. https://doi.org/10.15388/na.2019.4.6 doi: 10.15388/na.2019.4.6
    [32] K. Ma, X. Li, S. Sun, Boundary value problems of fractional $q$-difference equations on the half-line, Bound. Value Probl., 2019 (2019), 46. https://doi.org/10.1186/s13661-019-1159-3 doi: 10.1186/s13661-019-1159-3
    [33] A. Wongcharoen, A. Thatsatian, S. K. Ntouyas, J. Tariboon, Nonlinear fractional $q$-difference equation with fractional Hadamard and quantum integral nonlocal conditions, J. Function Spaces, 2020 (2020), 9831752. https://doi.org/10.1155/2020/9831752 doi: 10.1155/2020/9831752
    [34] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. https://doi.org/10.1186/1687-1847-2013-282 doi: 10.1186/1687-1847-2013-282
    [35] B. Ahmad, S. K. Ntouyas, J. Tariboon, Quantum calculus: New concepts, impulsive IVPs and BVPs, inequalities, Singapore: World Scientific, 2016. https://doi.org/10.1142/10075
    [36] P. Wongsantisuk, S. K. Ntouyas, D. Passary, J. Tariboon, Hilfer fractional quantum derivative and boundary value problems, Mathematics, 10 (2022), 878. https://doi.org/10.3390/math10060878 doi: 10.3390/math10060878
    [37] J. Tariboon, S. K. Ntouyas, P. Agarwal, New concepts of fractional quantum calculus and applications to impulsive fractional $q$-difference equations, Adv. Differ. Equ., 2015 (2015), 18. https://doi.org/10.1186/s13662-014-0348-8 doi: 10.1186/s13662-014-0348-8
    [38] K. Deimling, Nonlinear functional analysis, Berlin, Heidelberg: Springer, 1985. https://doi.org/10.1007/978-3-662-00547-7
    [39] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [40] M. A. Krasnosel'skiǐ, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(763) PDF downloads(66) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog