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1. Introduction

An interesting area of research is the topic of coupled systems of fractional differential equations,
as subjected to various types of nonlocal boundary conditions, since many real word problems can be
modeled by these systems; see, for example, [1–4] and the references therein. The use of nonlocal
boundary conditions is also favorable for numerous problems in physics and other areas of applied
mathematics. In the literature, one can find many fractional derivative operators, the most known of
them are those of Riemann-Liouville, Caputo, Katugampola, Hadamard, Hilfer, etc. See [5–10] for the
treatments on these operators. Also, see [11] for a variety of results of boundary value problems that
use different kinds of fractional-order derivative operators with nonlocal boundary conditions. Aside
from fractional calculus, there is also a notion of fractal calculus which links the idea of fractional
calculus with fractional dimensions. See [12] for details and applications to the dynamics of porous
media and hierarchical structures.
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In [13], Hilfer gives a new fractional derivative operator, which generalizes the Riemann-Liouville
and Caputo fractional derivatives by adjusting the parameters based on its definition. See [14] for
several benefits of using the Hilfer derivative. We refer the interested reader to [15–18] and the
references therein for problems including the Hilfer fractional derivative.

The study of calculus without the notion of limits is typically known as quantum calculus or
q-calculus. The first person to establish what is known as the q-derivative and q-integral is
Jackson [19]. There are many applications of quantum calculus, such as physics, number theory,
integer partitions, orthogonal polynomials and hypergeometric functions; see [20, 21]. There has also
been a generalization of q-derivatives and q-integrals into orders other than integers by Al-Salam [22]
and Agarwal [23], which is used in the development of the q-difference calculus. For details on
q-fractional calculus and equations, see the monograph of [24]. For new results on the topic,
see [25–33] and the references therein. Tariboon and Ntouyas [34] also introduced quantum calculus
on finite intervals. For details on quantum calculus and recent results, we refer the interested reader to
the monograph of [35].

Recently, in [36], the generalization of the Hilfer fractional derivative, which was developed by R.
Hilfer in [13], was introduced, called the Hilfer fractional quantum derivative. Also, in [36], studies
on such initial and boundary value problems were done via fixed-point theory, with a new class of
boundary value problems using the Hilfer quantum fractional derivative of the following form:

H
a Dα,βq x(t) = f (t, x(t)), a < t < b,

x(a) = 0, x(b) =
m∑

i=1

λi

(
aIκiqi

x
)

(ηi),
(1.1)

where H
a Dα,βq is the Hilfer quantum fractional derivative, whose order is α ∈ (1, 2) with β ∈ (0, 1) and

q ∈ (0, 1), f is a function defined from [a, b] × R to R, aIκiqi is the quantum fractional integral, whose
order is κi > 0, λi ∈ R, qi ∈ (0, 1) and ηi ∈ [a, b] for each 1 ≤ i ≤ m. The existence and uniqueness of
the solutions for such a system were established via Banach’s fixed-point theorem.

In the present paper, our aim is to enrich the literature on the Hilfer quantum fractional derivative by
combining the Hilfer quantum and Riemann-Liouville fractional derivative operators with q-Riemann-
Liouville integral operators. Such settings for this combination, as far as we know, are new in the
literature. Thus, in the present paper, we investigate the existence and uniqueness of the solutions to
the following coupled system involving Hilfer fractional quantum derivatives with nonlocal boundary
value conditions containing q-Riemann-Liouville fractional derivatives and integrals of the following
form: 

(H
a Dα1,β1

q1
y)(t) = g (t, y(t), z(t)) , a < t < b,

(H
a Dα2,β2

q2
z)(t) = h (t, y(t), z(t)) , a < t < b,

y(a) = 0, y(b) = µ2

(
RL
a Dλ2

q2
z
)

(η2) + δ2

(
aIϵ2q2

z
)

(ξ2),

z(a) = 0, z(b) = µ1

(
RL
a Dλ1

q1
y
)

(η1) + δ1

(
aIϵ1q1

y
)

(ξ1),

(1.2)

where αi ∈ (1, 2), βi, qi, λi ∈ (0, 1), i = 1, 2, a ≥ 0, ϵ1, ϵ2 > 0, η j, ξ j ∈ [a, b], µ j, δ j ∈ R, j = 1, 2, the
operators H

a Dαr ,βr
qr and RL

a Dλr
qr are the Hilfer and Riemann-Liouville quantum fractional

derivatives, respectively, with orders αr, λr, quantum number qr and Hilfer parameter βr, r = 1, 2;
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g, h : [a, b] × R × R → R are the given functions, aIϵkqk is the qk-Riemann-Liouville integral operator
with orders ϵk > 0, k = 1, 2 and all fractional operators are initiated at a point a.

Existence and uniqueness results for the system (1.2) are obtained by using classical fixed-point
theorems. Thus, via Banach’s contraction mapping principle, the existence and uniqueness of the
solution is guaranteed, while the Leray-Schauder alternative and Krasnosel’skiĭ fixed-point theorem
are used to show the solution’s existence. These obtained results are new and will enrich the literature
on this new topic of research, for which the existing results are very limited.

We emphasize that, in this paper, we initiate the study of a coupled system in which we combine
the following:

• Hilfer fractional quantum derivatives,
• q-Riemann-Liouville integral operators,
• q-Riemann-Liouville differential operators,
• mixed nonlocal boundary conditions including the Riemann-Liouville derivative and integral

operators.

The used method is standard, but its configuration in the coupled quantum system (1.2) is new.
The organization of this paper is as follows. Section 2 covers some preliminaries and lemmas, with

some basic results from the topics of q-calculus up to the Hilfer fractional quantum derivative. Also, we
prove an auxiliary lemma in order to transform the given nonlinear system into a fixed-point problem.
In Section 3, we prove the results on existence and uniqueness of the solution for the Hilfer coupled
quantum system (1.2). Finally, illustrative examples are constructed in Section 4.

2. Preliminaries

In this section, we recall some definitions and basic properties from quantum calculus, fractional
quantum calculus and the Hilfer fractional quantum derivative.

2.1. Quantum calculus

Let y : [a, b] → R be a given function. The quantum derivative on [a, b] (which was introduced by
Tariboon and Ntouyas in 2013 [34]) is defined by

aDqy(t) =
y(t) − y(qt + (1 − q)a)

(1 − q)(t − a)
, t ∈ (a, b], (2.1)

and aDqy(a) = lim
t→a

(
aDqy

)
(t). If a = 0, for t ∈ (0, b], it is reduced to

Dq f (t) =
f (t) − f (qt)

(1 − q)t
, (2.2)

which is the Jackson q-derivative (first defined by Jackson in 1910 [19]). As is customary, the quantum
integral (q-integral) of a function y is defined as

aIqy(t) =
∫ t

a
y(s)adqs = (1 − q)(t − a)

∞∑
i=0

qiy(qit + (1 − qi)a). (2.3)
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For the setting a = 0, we will obtain the Jackson q-integral as

Iqy(t) =
∫ t

0
y(s)dqs = (1 − q)t

∞∑
i=0

qiy(qit). (2.4)

It is not difficult to define the q-derivative and q-integral of higher order, e.g., aDn
q and aIn

q , n ∈ Z, i.e., the
set of integers. The story of fractional quantum calculus was begun by generalizing the integer-order
n by ω ∈ R based on definitions (2.2) and (2.4) by Al-Salam in 1966 [22] and Agarwal in 1969 [23].
Tariboon et al. replaced n byω by using definitions (2.1) and (2.3) in 2015 [37]. The key tool of success
is the q-power function, which is contained inside the integration. The q-power function defined on
[a, b] is as follows:

a(t − s)(ω)
q =

∞∏
i=0

(t −a Ψ
i
q(s))

(t −a Ψi+ω
q (s))

,

where aΨ
i
q(t) = qit + (1 − qi)a and ω ∈ R. If a = 0, it is reduced to 0Ψ

i
q(t) = qit, which gives

(t − s)(ω)
q =

∞∏
i=0

(t − qis)
(t − qi+ωs)

, (2.5)

and it appears in the kernel of fractional quantum calculus in [22,23]. Note that, if ω = k is an integer,
we can rewrite (2.5) as

(t − s)(k)
q =

k−1∏
i=0

(t − qis), k ∈ N ∪ {∞}.

Definition 2.1. [37] The fractional quantum derivative of Riemann-Liouville type of order ω ≥ 0 on
the interval [a, b] is

(RL
a Dωq y)(t) = (aDn

qaIn−ω
q y)(t)

=
1

Γq(n − ω)

(
aDn

q

) ∫ t

a
a(t −a Φq(s))(n−ω−1)

q y(s) adqs, ω > 0,

and (RL
a D0

q f )(t) = f (t). Here, n is the smallest integer such that ω ≤ n, and Γq(v) is defined as

Γq(v) =
(1 − q)(v−1)

q

(1 − q)v−1 , v ∈ R\{0,−1,−2, . . .}.

Also, aΦq is the q-shifting operator

aΦq(m) = qm + (1 − q)a.

Definition 2.2. [37] Let ω ≥ 0 and y : [a, b] → R. The Riemann-Liouville-type fractional q-integral
of y is defined as

(aIωq y)(t) =
1
Γq(ω)

∫ t

a
a(t − aΦq(s))(ω−1)

q y(s)adqs, ω > 0, t ∈ [a, b];

and, (aI0
qy)(t) = y(t), provided that the right-hand side exists.
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Definition 2.3. [36] The Hilfer fractional quantum derivative of order ω > 0, with the parameter
ζ ∈ [0, 1], of a function y defined on [a, b], is defined as

H
a Dω,ζq y(t) = aIζ(n−ω)

q aDn
q aI(1−ζ)(n−ω)

q y(t),

where ω ∈ (n − 1, n), with q ∈ (0, 1) and t > a.

We remark that the Hilfer fractional quantum derivative is an interpolation between two types of
fractional derivatives, that is, if ζ = 0, we obtain the fractional quantum Riemann-Liouville derivative
as

H
a Dω,0q y(t) = RL

a Dωq y(t),

and if ζ = 1, we obtain the fractional quantum Caputo derivative:

H
a Dω,1q y(t) = C

a Dωq y(t),

which is defined by

(C
a Dωq y)(t) = aIn−ω

q

(
aDn

qy
)

(t),

=
1

Γq(n − ω)

∫ t

a
a(t −a Φq(s))(n−ω−1)

q

(
aDn

qy
)

(s) adqs, ω > 0.

Lemma 2.1. [36] Assume that y ∈ Cn([a, b],R), ω ∈ (n − 1, n), ζ ∈ (0, 1) and q ∈ (0, 1). Then,

(i) aIωq
(

H
a Dω,ζq y

)
(t) = y(t) −

n∑
j=1

(t − a)γ− j

Γq(γ − j + 1)

(
RL
a Dγ− j

q y
)

(a),

(ii) H
a Dω,ζq

(
aIωq y

)
(t) = y(t),

where γ = ω + ζ(n − ω).

Lemma 2.2. [36] Let ω ∈ (0, δ) and q ∈ (0, 1). Then,

(a) RL
a Dωq (t − a)δ =

Γq(δ + 1)
Γq(δ − ω + 1)

(t − a)δ−ω,

(b) aIωq (t − a)δ =
Γq(δ + 1)
Γq(δ + ω + 1)

(t − a)δ+ω.

2.2. An auxiliary result

In the next lemma, an auxiliary result is proved, which is the basic tool in transforming the nonlinear
problem (1.2) into a fixed-point problem, and we deal with a linear variant of the problem (1.2). For
convenience, we set the following:

Φ1 =
µ1Γq1(γ1)
Γq1(γ1 − λ1)

(η1 − a)γ1−λ1−1 +
δ1Γq1(γ1)
Γq1(γ1 + ϵ1)

(ξ1 − a)γ1+ϵ1−1,

Φ2 =
µ2Γq2(γ2)
Γq2(γ2 − λ2)

(η2 − a)γ2−λ2−1 +
δ2Γq2(γ2)
Γq2(γ2 + ϵ2)

(ξ2 − a)γ2+ϵ2−1, (2.6)

Φ3 = (b − a)γ1+γ2−2 − Φ1Φ2.
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Lemma 2.3. Let g1, h1 ∈ C2([a, b],R) and Φ3 , 0. Then, the solution of the linear system

(H
a Dα1,β1

q1
y)(t) = g1(t), a < t < b,

(H
a Dα2,β2

q2
z)(t) = h1(t), a < t < b,

y(a) = 0, y(b) = µ2

(
RL
a Dλ2

q2
z
)

(η2) + δ2

(
aIϵ2q2

z
)

(ξ2),

z(a) = 0, z(b) = µ1

(
RL
a Dλ1

q1
y
)

(η1) + δ1

(
aIϵ1q1

y
)

(ξ1),

(2.7)

is uniquely given by

y(t) = (t − a)γ1−1
{
−

(b − a)γ2−1

Φ3
aIα1

q1
g1(b) + µ2

(b − a)γ2−1

Φ3
aIα2−λ2

q2
h1(η)

+δ2
(b − a)γ2−1

Φ3
aIα2+ϵ2

q2
h1(ξ2) −

Φ2

Φ3
aIα2

q2
h1(b) + µ1

Φ2

Φ3
aIα1−λ1

q1
g1(η1)

+ δ1
Φ2

Φ3
aIα1+ϵ1

q1
g1(ξ1)

}
+ aIα1

q1
g1(t) (2.8)

and

z(t) = (t − a)γ2−1
{
−

(b − a)γ1−1

Φ3
aIα2

q2
h1(b) + µ1

(b − a)γ1−1

Φ3
aIα1−λ1

q1
g1(η1)

+δ1
(b − a)γ1−1

Φ3
aIα1+ϵ1

q1
g1(ξ1) −

Φ1

Φ3
aIα1

q1
g1(b) + µ2

Φ1

Φ3
aIα2−λ2

q2
h1(η2)

+ δ2
Φ1

Φ3
aIα2+ϵ2

q2
h1(ξ2)

}
+ aIα2

q2
h1(t), (2.9)

where Φi, i = 1, 2, 3 are given in (2.6).

Proof. For the first equation in (2.7), taking the Riemann-Liouville fractional integral of order α1 and
quantum number q1 from a to t on both sides and applying Lemma 2.1, we have

y(t) =
(t − a)γ1−1

Γq1(γ1)
RL
a Dγ1−1

q1
y(a) +

(t − a)γ1−2

Γq1(γ1 − 1)
RL
a Dγ1−2

q1
y(a) + aIα1

q1
g1(t)

:= (t − a)γ1−1K1 + (t − a)γ1−2K2 + aIα1
q1

g1(t), (2.10)

where γ1 = α1 + β1(2 − α1) and K1,K2 ∈ R. Since 1 < α1 < 2 and γ1 ∈ (α1, 2), we obtain that K2 ≡ 0
by that condition y(a) = 0 and (2.10) is presented as

y(t) = (t − a)γ1−1K1 + aIα1
q1

g1(t). (2.11)

Lemma 2.2 with (2.11) leads to

RL
a Dλ1

q1
y(η1) = K1

Γq1(γ1)
Γq1(γ1 − λ1)

(η1 − a)γ1−λ1−1 + aIα1−λ1
q1

g1(η1) (2.12)

and

aIϵ1q1
y(ξ1) = K1

Γq1(γ1)
Γq1(γ1 + ϵ1)

(ξ1 − a)γ1+ϵ1−1 + aIα1+ϵ1
q1

g1(ξ1). (2.13)
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In the same way as with the second equation of (2.7), taking the fractional integral of
Riemann-Liouville type of order α2 and quantum number q2, combined with the condition z(a) = 0,
we obtain

z(t) = (t − a)γ2−1C1 + aIα2
q2

h1(t), (2.14)

where γ2 = α2 + β2(2 − α2) and C1 ∈ R. Applying Lemma 2.2 with quantum number q2 in (2.14), we
get

RL
a Dλ2

q2
z(η2) = C1

Γq2(γ2)
Γq2(γ2 − λ2)

(η2 − a)γ2−λ2−1 + aIα2−λ2
q2

h1(η2) (2.15)

and

aIϵ2q2
z(ξ2) = C1

Γq2(γ2)
Γq2(γ2 + ϵ2)

(ξ2 − a)γ2+ϵ2−1 + aIα2+ϵ2
q2

h1(ξ2). (2.16)

Substituting (2.12), (2.13), (2.15) and (2.16) in the second condition of the third and fourth equalities
of (2.7), we obtain the system below.

(b − a)γ1−1K1 − Φ2C1 = −aIα1
q1

g1(b) + µ2aIα2−λ2
q2

h1(η2) + δ2aIα2+ϵ2
q2

h1(ξ2),
−Φ1K1 + (b − a)γ2−1C1 = −aIα2

q2
h1(b) + µ1aIα1−λ1

q1
g1(η1) + δ1aIα1+ϵ1

q1
g1(ξ1).

Solving the above system for K1 and C1, we have

K1 =
(b − a)γ2−1

Φ3

(
−aIα1

q1
g1(b) + µ2aIα2−λ2

q2
h1(η2) + δ2aIα2+ϵ2

q2
h1(ξ2)

)
+
Φ2

Φ3

(
−aIα2

q2
h1(b) + µ1aIα1−λ1

q1
g1(η1) + δ1aIα1+ϵ1

q1
g1(ξ1)

)
and

C1 =
(b − a)γ1−1

Φ3

(
−aIα2

q2
h1(b) + µ1aIα1−λ1

q1
g1(η1) + δ1aIα1+ϵ1

q1
g1(ξ1)

)
+
Φ1

Φ3

(
−aIα1

q1
g1(b) + µ2aIα2−λ2

q2
h1(η2) + δ2aIα2+ϵ2

q2
h1(ξ2)

)
.

Putting constants K1 and C1 into (2.11) and (2.14), (2.8) and (2.9) are then established. The converse
can be verified by direct computation. The proof is finished. □

2.3. Fixed-point theorems

The following fixed-point theorems are used in the proofs of our main results.

Lemma 2.4. [38] (Banach fixed-point theorem) Let X be a Banach space, D ⊂ X be closed and
F : D→ D be a strict contraction, i.e., |Fx − Fy| ≤ k|x − y| for some k ∈ (0, 1) and all x, y ∈ D. Then,
F has a fixed point in D.

Lemma 2.5. [39] (Leray-Schauder alternative) Let T : E → E be an operator on a Banach space E
such that T is completely continuous. Let

ξT = {x ∈ E|x = λT (x) for some 0 < λ < 1};

then, either ξT is unbounded or the operator T has at least one fixed point.
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Lemma 2.6. [40] (Krasnosel’skiĭ’s fixed-point theorem) For a Banach space X, let ∅ , M ⊂ X be a
closed, bounded and convex subset. Let A and B be operators on M such that

(a) Ax + By ∈ M for any x, y ∈ M,
(b) A is continuous and compact,
(c) B is a contraction mapping.

Then, A + B has a fixed point, i.e., Az + Bz = z for some z ∈ M.

3. Existence results

Let X = C([a, b],R) be the Banach space of all continuous functions from [a, b] to R, as endowed
with the supremum norm ∥y∥ = sup{|y(t)| : t ∈ [a, b]}. The product space (X×X, ∥(y, z)∥) with the norm
∥(y, z)∥ = ∥y∥ + ∥z∥ is also a Banach space.

In view of Lemma 2.3, define an operatorA : X × X → X × X, where

A(y, z) = (A1(y, z), A2(y, z)) , (3.1)

A1(y, z)(t)

= (t − a)γ1−1
{
−

(b − a)γ2−1

Φ3
aIα1

q1
g (b, y(b), z(b))

+ µ2
(b − a)γ2−1

Φ3
aIα2−λ2

q2
h (η2, y(η2), z(η2)) + δ2

(b − a)γ2−1

Φ3
aIα2+ϵ2

q2
h (ξ2, y(ξ2), z(ξ2))

−
Φ2

Φ3
aIα2

q2
h (b, y(b), z(b)) + µ1

Φ2

Φ3
aIα1−λ1

q1
g (η1, y(η1), z(η1))

+ δ1
Φ2

Φ3
aIα1+ϵ1

q1
g (ξ1, y(ξ1), z(ξ1))

}
+ aIα1

q1
g (t, y(t), z(t)) (3.2)

and

A2(y, z)(t)

= (t − a)γ2−1
{
−

(b − a)γ1−1

Φ3
aIα2

q2
h (b, y(b), z(b))

+ µ1
(b − a)γ1−1

Φ3
aIα1−λ1

q1
g (η1, y(η1), z(η1)) + δ1

(b − a)γ1−1

Φ3
aIα1+ϵ1

q1
g (ξ1, y(ξ1), z(ξ1))

−
Φ1

Φ3
aIα1

q1
g (b, y(b), z(b)) + µ2

Φ1

Φ3
aIα2−λ2

q2
h (η2, y(η2), z(η2))

+ δ2
Φ1

Φ3
aIα2+ϵ2

q2
h (ξ2, y(ξ2), z(ξ2))

}
+ aIα2

q2
h (t, y(t), z(t)) . (3.3)

For convenience, we set the following:

M1 =
(b − a)γ1+γ2+α1−2

|Φ3|Γq1(α1 + 1)
+
|Φ2|

|Φ3|

(
|µ1| (b − a)γ1+α1−λ1−1

Γq1(α1 − λ1 + 1)
+
|δ1| (b − a)γ1+α1+ϵ1−1

Γq1(α1 + ϵ1 + 1)

)
+

(b − a)α1

Γq1(α1 + 1)
,
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M2 =
|µ2| (b − a)γ1+γ2+α2−λ2−2

|Φ3|Γq2(α2 − λ2 + 1)
+
|δ2| (b − a)γ1+γ2+α2+ϵ2−2

|Φ3|Γq2(α2 + ϵ2 + 1)
+
|Φ2|

|Φ3|
·

(b − a)γ1+α2−1

Γq2(α2 + 1)
,

M3 =
|µ1| (b − a)γ1+γ2+α1−λ1−2

|Φ3|Γq1(α1 − λ1 + 1)
+
|δ1| (b − a)γ1+γ2+α1+ϵ1−2

|Φ3|Γq1(α1 + ϵ1 + 1)
+
|Φ1|

|Φ3|
·

(b − a)γ2+α1−1

Γq1(α1 + 1)
,

M4 =
(b − a)γ1+γ2+α2−2

|Φ3|Γq2(α2 + 1)
+
|Φ1|

|Φ3|

(
|µ2| (b − a)γ2+α2−λ2−1

Γq2(α2 − λ2 + 1)
+
|δ2| (b − a)γ2+α2+ϵ2−1

Γq2(α2 + ϵ2 + 1)

)
+

(b − a)α2

Γq2(α2 + 1)
. (3.4)

We now prove an existence and uniqueness result for the Hilfer fractional quantum system (1.2) by
using Banach’s contraction mapping principle (Lemma 2.4).

Theorem 3.1. Let g, h : [a, b] × R × R→ R be such that the following holds:

(H1) There exist real numbers mi, ni ≥ 0, i = 1, 2 such that, for every t ∈ [a, b] and yi, zi ∈ R, i = 1, 2,

|g(t, y1, z1) − g(t, y2, z2)| ≤ m1|y1 − y2| +m2|z1 − z2|

and
|h(t, y1, z1) − h(t, y2, z2)| ≤ n1|y1 − y2| + n2|z1 − z2|.

Then, if
(M1 +M3)(m1 +m2) + (M2 +M4)(n1 + n2) < 1, (3.5)

where Mi, i = 1, 2, 3, 4 are defined in (3.4), the Hilfer fractional quantum system (1.2) has a unique
solution on [a, b].

Proof. Let us define Br = {(y, z) ∈ X × X : ∥(y, z)∥ ≤ r}, with

r >
(M1 +M3)N1 + (M2 +M4)N2

1 − [(M1 +M3)(m1 +m2) + (M2 +M4)(n1 + n2)]
,

and we have that supt∈[a,b] |g(t, 0, 0)| = N1 and supt∈[a,b] |h(t, 0, 0)| = N2.

We first show thatABr ⊂ Br. Note that

|g(t, y(t), z(t))| ≤ |g(t, y(t), z(t)) − g(t, 0, 0)| + |g(t, 0, 0)| ≤ m1|y(t)| +m2|z(t)| + N1

≤ m1∥y∥ +m2∥z∥ + N1,

and, similarly,
|h(t, y(t), z(t))| ≤ n1∥y∥ + n2∥z∥ + N2.

Then, for (y, z) ∈ Br, we have

|A1(y, z)(t)|

≤ (b − a)γ1−1
[ (b − a)γ2−1

|Φ3|

(
aIα1

q1
|g(b, y(b), z(b))| + |µ2| aIα2−λ2

q2
|h(η2, y(η2), z(η2))|

+|δ2| aIα2+ϵ2
q2
|h(ξ2, y(ξ2), z(ξ2))|

)
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+
|Φ2|

|Φ3|

(
aIα2

q2
|h(b, y(b), z(b))| + |µ1| aIα1−λ1

q1
|g(η1, y(η1), z(η1))|

+|δ1| aIα1+ϵ1
q1
|g(ξ1, y(ξ1), z(ξ1))|

)]
+ aIα1

q1
|g(t, y(t), z(t))|

≤

{
(b − a)γ1−1

[
(b − a)γ2−1

|Φ3|
aIα1

q1
(1)(b) +

|Φ2|

|Φ3|

(
|µ1| aIα1−λ1

q1
(1)(b) + |δ1| aIα1+ϵ1

q1
(1)(b)

)]
+ aIα1

q1
(1)(b)

}
(m1∥y∥ +m2∥z∥ + N1)

+(b − a)γ1−1
[
(b − a)γ2−1

|Φ3|

(
|µ2| aIα2−λ2

q2
(1)(b) + |δ2| aIα2+ϵ2

q2
(1)(b)

)
+
|Φ2|

|Φ3|
aIα2

q2
(1)(b)

]
×(n1∥y∥ + n2∥z∥ + N2)

= M1(m1∥y∥ +m2∥z∥ + N1) +M2(n1∥y∥ + n2∥z∥ + N2)
= (M1m1 +M2n1)∥y∥ + (M1m2 +M2n2)∥z∥ +M1N1 +M2N2

≤ [M1(m1 +m2) +M2(n1 + n2)]r +M1N1 +M2N2.

Similarly, we also obtain

|A2(y, z)(t)|

≤ (b − a)γ2−1
[
(b − a)γ1−1

|Φ3|

(
|µ1| aIα1−λ1

q1
(1)(b) + |δ1| aIα1+ϵ1

q1
(1)(b)

)
+
|Φ1|

|Φ3|
aIα1

q1
(1)(b)

]
×(m1∥y∥ +m2∥z∥ + N1)

+

{
(b − a)γ2−1

[
(b − a)γ1−1

|Φ3|
aIα2

q2
(1)(b) +

|Φ1|

|Φ3|

(
|µ2| aIα2−λ2

q2
(1)(b) + |δ2| aIα2+ϵ2

q2
(1)(b)

)]
+ aIα2

q2
(1)(b)

}
(n1∥y∥ + n2∥z∥ + N2)

= M3(m1∥y∥ +m2∥z∥ + N1) +M4(n1∥y∥ + n2∥z∥ + N2)
= (M3m1 +M4n1)∥y∥ + (M3m2 +M4n2)∥z∥ +M3N1 +M4N2

≤ [M3(m1 +m2) +M4(n1 + n2)]r +M3N1 +M4N2.

From the foregoing inequalities, we then conclude that

∥A(y, z)∥ = ∥A1(y, z)∥ + ∥A2(y, z)∥
≤ [M1(m1 +m2) +M2(n1 + n2)]r +M1N1 +M2N2

+[M3(m1 +m2) +M4(n1 + n2)]r +M3N1 +M4N2

≤ r;

thus, ABr ⊂ Br. The remaining part is to show that A is a contraction mapping. For (y1, z1), (y2, z2) ∈
X × X, we have

|A1(y2, z2)(t) −A1(y1, z1)(t)|

≤ (b − a)γ1−1
[ (b − a)γ2−1

|Φ3|

(
aIα1

q1
|g(b, y2(b), z2(b)) − g(b, y1(b), z1(b))|

+|µ2| aIα2−λ2
q2
|h(η2, y2(η2), z2(η2)) − h(η2, y1(η2), z1(η2))|
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+ |δ2| aIα2+ϵ2
q2
|h(ξ2, y2(ξ2), z2(ξ2)) − h(ξ2, y1(ξ2), z1(ξ2))|

)
+
|Φ2|

|Φ3|

(
aIα2

q2
|h(b, y2(b), z2(b)) − h(b, y1(b), z1(b))|

+|µ1| aIα1−λ1
q1
|g(η1, y2(η1), z2(η1)) − g(η1, y1(η1), z1(η1))|

+|δ1| aIα1+ϵ1
q1
|g(ξ1, y2(ξ1), z2(ξ1)) − g(ξ1, y1(ξ1), z1(ξ1))|

)]
+aIα1

q1
|g(t, y2(t), z2(t)) − g(t, y1(t), z1(t))|

≤ (b − a)γ1−1
[
(b − a)γ2−1

|Φ3|

{
aIα1

q1
(m1∥y1 − y2∥ +m2∥z1 − z2∥)(b)

+|µ2| aIα2−λ2
q2

(n1∥y1 − y2∥ + n2∥z1 − z2∥)(b)

+|δ2| aIα2+ϵ2
q2

(n1∥y1 − y2∥ + n2∥z1 − z2∥)(b)
}

+
|Φ2|

|Φ3|

{
aIα2

q2
(n1∥y1 − y2∥ + n2∥z1 − z2∥)(b)

+|µ1| aIα1−λ1
q1

(m1∥y1 − y2∥ +m2∥z1 − z2∥)(b)

+ |δ1| aIα1+ϵ1
q1

(m1∥y1 − y2∥ +m2∥z1 − z2∥)(b)
}]

+aIα1
q1

(m1∥y1 − y2∥ +m2∥z1 − z2∥)(b)
= M1(m1∥y1 − y2∥ +m2∥z1 − z2∥) +M2(n1∥y1 − y2∥ + n2∥z1 − z2∥)
= (M1m1 +M2n1)∥y1 − y2∥ + (M1m2 +M2n2)∥z1 − z2∥

≤ [M1(m1 +m2) +M2(n1 + n2)](∥y1 − y2∥ + ∥z1 − z2∥),

and, similarly,

|A2(y2, z2)(t) −A2(y1, z1)(t)| ≤ [M3(m1 +m2) +M4(n1 + n2)](∥y1 − y2∥ + ∥z1 − z2∥).

Then, for the operatorA, we have

∥A(y2, z2) −A(y1, z1)∥ ≤ ∥A(y1, z1)∥ + ∥A(y2, z2)∥
≤ [(M1 +M3)(m1 +m2) + (M2 +M4)(n1 + n2)]
×(∥y1 − y2∥ + ∥z1 − z2∥).

From the assumption (3.5), the operator A is a contraction mapping. By using Banach’s fixed-point
theorem, we have that A has a unique fixed point, which in turn creates the unique solution of the
Hilfer fractional quantum system (1.2) on the interval [a, b], which completes the proof. □

The next existence result relies on the Leray-Schauder alternative (Lemma 2.5).

Theorem 3.2. Assume that g, h ∈ C([a, b] × R × R,R). In addition, we suppose the following:

(H2) There exist real numbers u0, v0 > 0 and ui, vi ≥ 0 for i = 1, 2 such that, for every t, yi ∈ R, i = 1, 2,

|g(t, y1, y2)| ≤ u0 + u1|y1| + u2|y2|,

|h(t, y1, y2)| ≤ v0 + v1|y1| + v2|y2|.
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If
(M1 +M3)u1 + (M2 +M4)v1 < 1 and (M1 +M3)u2 + (M2 +M4)v2 < 1,

where Mi, i = 1, 2, 3, 4 is as defined in (3.4), then there exists at least one solution for the Hilfer
fractional quantum system (1.2) on [a, b].

Proof. The operatorA : X × X → X × X is continuous since the functions g, h : [a, b]×R×R→ R are
continuous. Next, consider a bounded subset Bρ = {(y, z) ∈ X × X : ∥(y, z)∥ ≤ ρ} of X × X. Note that,
for (y, z) ∈ Bρ,

|g(t, y(t), z(t))| ≤ u0 + u1|y| + u2|z| ≤ u0 + (u1 + u2)ρ = L1,

|h(t, y(t), z(t))| ≤ v0 + v1|y| + v2|z| ≤ v0 + (v1 + v2)ρ = L2.

We will show thatABρ is uniformly bounded. For (y, z) ∈ Bρ, we obtain

|A1(y, z)(t)|

≤ (b − a)γ1−1
[ (b − a)γ2−1

|Φ3|

(
aIα1

q1
|g(b, y(b), z(b))| + |µ2| aIα2−λ2

q2
|h(η2, y(η2), z(η2))|

+|δ2| aIα2+ϵ2
q2
|h(ξ2, y(ξ2), z(ξ2))|

)
+
|Φ2|

|Φ3|

(
aIα2

q2
|h(b, y(b), z(b))| + |µ1| aIα1−λ1

q1
|g(η1, y(η1), z(η1))|

+|δ1| aIα1+ϵ1
q1
|g(ξ1, y(ξ1, z(ξ1)|)

)]
+ aIα1

q1
|g(t, y(t), z(t))|

≤

{
(b − a)γ1−1

[
(b − a)γ2−1

|Φ3|
aIα1

q1
(1)(b) +

|Φ2|

|Φ3|

(
|µ1| aIα1−λ1

q1
(1)(b) + |δ1| aIα1+ϵ1

q1
(1)(b)

)]
+ aIα1

q1
(1)(b)

}
L1

+(b − a)γ1−1
[
(b − a)γ2−1

|Φ3|

(
|µ2| aIα2−λ2

q2
(1)(b) + |δ2| aIα2+ϵ2

q2
(1)(b)

)
+
|Φ2|

|Φ3|
aIα2

q2
(1)(b)

]
L2

= M1L1 +M2L2,

which implies that
∥A1(y, z)∥ ≤ M1L1 +M2L2.

Similarly, we can show that
∥A2(y, z)∥ ≤ M3L1 +M4L2.

Therefore, A is uniformly bounded, as ∥A(y, z)∥ ≤ (M1 +M3)L1 + (M2 +M4)L2. Next, we will prove
thatA is equicontinuous. For τ1, τ2 ∈ [a, b] with τ2 > τ1, we have that

|A1(y, z)(τ2) −A1(y, z)(τ1)|

≤
∣∣∣(τ2 − a)γ1−1 − (τ1 − a)γ1−1

∣∣∣ [ (b − a)γ2−1

|Φ3|

(
aIα1

q1
|g(b, y(b), z(b))|

+|µ2| aIα2−λ2
q2
|h(η2, y(η2), z(η2))| + |δ2| aIα2+ϵ2

q2
|h(ξ2, y(ξ2), z(ξ2))

)
+
|Φ2|

|Φ3|

(
aIα2

q2
|h(b, y(b), z(b))| + |µ1| aIα1−λ1

q1
|g(η1, y(η1), z(η1))|
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+|δ1| aIα1+ϵ1
q1
|g(ξ1, y(ξ1), z(ξ1)|

)]
+

∣∣∣aIα1
q1

g(τ2, y(τ2), z(τ2)) − aIα1
q1

g(τ1, y(τ1), z(τ1))
∣∣∣

≤
∣∣∣(τ2 − a)γ1−1 − (τ1 − a)γ1−1

∣∣∣ [ (b − a)γ2−1

|Φ3|

(
L1 aIα1

q1
(b) + L2|µ2| aIα2−λ2

q2
(η2)

+L2|δ2| aIα2+ϵ2
q2

(ξ2)
)
+ L2
|Φ2|

|Φ3|

(
aIα2

q2
(b) + L1|µ1| aIα1−λ1

q1
(η1)

+L1|δ1| aIα1+ϵ1
q1

(ξ1)
)]

+
L1

Γq(α1)

∫ τ1

a

∣∣∣∣a(τ2 − aΦq(s))(α1−1)
q − a(τ1 − aΦq(s))(α1−1)

q

∣∣∣∣ adqs

+
L1

Γq(α1)

∫ τ2

τ1

|a(τ2 − aΦq(s))(α1−1)
q | adqs,

which converges to zero as τ1 → τ2 independently of (y, z).
Similar analysis also yields

|A2(y, z)(τ2) −A2(y, z)(τ1)| → 0 as τ1 → τ2.

Hence, A(y, z) is equicontinuous. From the Arzelá-Ascoli theorem, the set A is relatively compact;
thus, the operatorA is completely continuous.

For the final part, we will show that the set

ξA = {(y, z) ∈ X × X|(y, z) = λA(y, z) for some 0 ≤ λ ≤ 1}

is bounded. Consider (y, z) ∈ ξA so that (y, z) = λA(y, z) for some λ ∈ [0, 1]. Then,

y(t) = λA1(y, z)(t), z(t) = λA2(y, z)(t) for all t ∈ [a, b].

Following the steps of proving the uniform boundedness, and by using (H2), we can easily derive
that

∥y∥ ≤ M1(u0 + u1∥y∥ + u2∥z∥) +M2(v0 + v1∥y∥ + v2∥z∥),
∥z∥ ≤ M3(u0 + u1∥y∥ + u2∥z∥) +M4(v0 + v1∥y∥ + v2∥z∥),

from which we get

∥y∥ + ∥z∥ ≤ (M1 +M3)u0 + (M2 +M4)v0 + [(M1 +M3)u1 + (M2 +M4)v1]∥y∥
+[(M1 +M3)u2 + (M2 +M4)v2]∥z∥.

By selecting

M0 = min{1 − [(M1 +M3)u1 + (M2 +M4)v1], 1 − [(M1 +M3)u2 + (M2 +M4)v2]},

we then obtain the inequality

∥(y, z)∥ ≤
(M1 +M3)u0 + (M2 +M4)v0

M0
. (3.6)

Hence, the set ξA is bounded. Using the Leray-Schauder alternative, we conclude that the operator A
has at least one fixed point, which creates a solution for our Hilfer fractional quantum system (1.2) on
[a, b]. This completes the proof. □
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For the final existence result, we apply Krasnosel’skiĭ’s fixed-point theorem (Lemma 2.6).

Theorem 3.3. Assume that g, h ∈ C([a, b] × R × R,R) satisfies (H1). In addition, we suppose the
following:

(H3) There exists nonnegative functions P,Q ∈ C([a, b],R) such that

|g(t, y, z)| ≤ P(t) and |h(t, y, z)| ≤ Q(t) for (t, x, y) ∈ [a, b] × R × R.

If

(m1 +m2)
(b − a)α1

Γq1(α1 + 1)
+ (n1 + n2)

(b − a)α2

Γq2(α2 + 1)
< 1, (3.7)

then there exists at least one solution for the Hilfer fractional quantum system (1.2) on [a, b].

Proof. We first decompose the operatorA intoA1 = A1,1 +A1,2 andA2 = A2,1 +A2,2 as follows:

A1,1(y, z)(t) = (t − a)γ1−1
[
(b − a)γ2−1

Φ3

(
−aIα1

q1
g(b, y(b), z(b)) + µ2 aIα2−λ2

q2
h(η2, y(η2), z(η2))

+ δ2 aIα2+ϵ2
q2

h(ξ2, y(ξ2), z(ξ2))
)
+
Φ2

Φ3

(
−aIα2

q2
h(b, y(b), z(b))

+µ1 aIα1−λ1
q1

g(η1, y(η1), z(η1)) + δ1 aIα1+ϵ1
q1

g(ξ1, y(ξ1), z(ξ1))
)]
, t ∈ [a, b],

A1,2(y, z)(t) = aIα1
q1

g(t, y(t), z(t)), t ∈ [a, b],

A2,1(y, z)(t) = (t − a)γ2−1
[
(b − a)γ1−1

Φ3

(
−aIα2

q2
h(b, y(b), z(b)) + µ1 aIα1−λ1

q1
g(η1, y(η1), z(η1))

+δ1 aIα1+ϵ1
q1

g(ξ1, y(ξ1), z(ξ1))
)
+
Φ1

Φ3

(
−aIα1

q1
g(b, y(b), z(b))

+µ2 aIα2−λ2
q2

h(η2, y(η2), z(η2)) + δ2 aIα2+ϵ2
q2

h(ξ2, y(ξ2), z(ξ2))
)]
, t ∈ [a, b],

A2,2(y, z)(t) = aIα2
q2

h(t, y(t), z(t)), t ∈ [a, b].

Let Bδ = {(y, z) ∈ X × X|∥(y, z)∥ ≤ δ} be a closed and bounded ball with

δ ≥ (M1 +M3)∥P∥ + (M2 +M4)∥Q∥.

For (y1, z1), (y2, z2) ∈ Bδ, as in Theorem 3.2, we have

|A1,1(y1, z1)(t) +A1,2(y2, z2)(t)| ≤ M1∥P∥ +M2∥Q∥

and
|A2,1(y1, z1)(t) +A2,2(y2, z2)(t)| ≤ M3∥P∥ +M4∥Q∥.

Consequently,

∥(A1,1 +A2,1)(y1, z1) + (A1,2 +A2,2)(y2, z2)∥ ≤ (M1 +M3)∥P∥ + (M2 +M4)∥Q∥ < δ,

which means that (A1,1 +A2,1)(y1, z1) + (A1,2 +A2,2)(y2, z2) ∈ Bδ.
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Next, we will show that the operator (A1,1,A2,1) is both compact and continuous. The continuity of
(A1,1,A2,1) follows directly from the fact that the functions g and h are continuous on [a, b] × R × R.
Also, for each (y, z) ∈ Bδ,

|A1,1(y, z)(t)| ≤ (b − a)γ1−1
[
(b − a)γ2−1

|Φ3|

(
∥P∥ aIα1

q1
(1)(b) + ∥Q∥|µ2| aIα2−λ2

q2
(1)(b)

)
+∥Q∥|δ2| aIα2+ϵ2

q2
(1)(b) +

|Φ2|

|Φ3|

(
∥Q∥ aIα2

q2
(1)(b) + ∥P∥|µ1| aIα1−λ1

q1
(1)(b)

)]
+∥P∥|δ1| aIα1+ϵ1

q1
(1)(b)

=
(
M1 −

(b − a)α1

Γq1(α1 + 1)

)
∥P∥ +M2∥Q∥,

and

|A2,1(y, z)(t)| ≤ (b − a)γ2−1
[
(b − a)γ1−1

|Φ3|

(
∥Q∥ aIα2

q2
(1)(b) + ∥P∥|µ1|aIα1−λ1

q1
(1)(b)

)
+∥P∥|δ1| aIα1+ϵ1

q1
(1)(b) +

|Φ1|

|Φ3|

(
∥P∥ aIα1

q1
(1)(b) + ∥Q∥|µ2|aIα2−λ2

q2
(1)(b)

)]
+∥Q∥|δ2| aIα2+ϵ2

q2
(1)(b)

= M3∥P∥ +
(
M4 −

(b − a)α2

Γq2(α2 + 1)

)
∥Q∥.

Hence,

∥(A1,1(y, z) +A2,1(y, z))∥ ≤
(
M1 +M3 −

(b − a)α1

Γq1(α1 + 1)

)
∥P∥ +

(
M2 +M4 −

(b − a)α2

Γq2(α2 + 1)

)
∥Q∥;

thus, the set (A1,1,A2,1)Bδ is uniformly bounded. Furthermore, for any τ1, τ2 ∈ [a, b] such that τ1 < τ2,
and for any (y, z) ∈ Bδ, we have

|A1,1(y, z)(τ2) −A1,1(y, z)(τ1)|

≤
∣∣∣(τ2 − a)γ1−1 − (τ1 − a)γ1−1

∣∣∣ [ (b − a)γ2−1

|Φ3|

(
aIα1

q1
|g(b, y(b), z(b))|

+|µ2|aIα2−λ2
q2
|h(η2, y(η2), z(η2))| + |δ2|aIα2+ϵ2

q2
|h(ξ2, y(ξ2), z(ξ2))|

)
+
|Φ2|

|Φ3|

(
aIα2

q2
|h(b, y(b), z(b))| + |µ1|aIα1−λ1

q1
|g(η1, y(η1), z(η1))|

+|δ1|aIα1+ϵ1
q1
|g(ξ1, y(ξ1), z(ξ1))|

)]
≤

∣∣∣(τ2 − a)γ1−1 − (τ1 − a)γ1−1
∣∣∣ [ (b − a)γ2−1

|Φ3|

(
∥P∥ aIα1

q1
(1)(b) + ∥Q∥|µ2| aIα2−λ2

q2
(1)(η2)

+∥Q∥|δ2| aIα2+ϵ2
q2

(1)(ξ2)
)
+
|Φ2|

|Φ3|

(
∥Q∥ aIα2

q2
(1)(b) + ∥P∥|µ1| aIα1−λ1

q1
(1)(η1)

+∥P∥|δ1| aIα1+ϵ1
q1

(1)(ξ1)
)]
,
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which converges to zero as τ1 → τ2 independently of (y, z) ∈ Bδ. Similarly, we can prove that
|A2,1(y, z)(τ2) −A2,1(y, z)(τ1)| → 0 as τ1 → τ2 independently of (y, z) ∈ Bδ. Hence,

|(A1,1,A2,1)(y, z)(τ2) − (A1,1,A2,1)(y, z)(τ1)| → 0 as τ1 → τ2,

which implies that the set (A1,1,A2,1)Bδ is equicontinuous. By the Arzelá-Ascoli theorem, we deduce
that the operator (A1,1,A2,1) is compact.

For the final step, we will show that the operator (A1,2,A2,2) is a contraction mapping. Let us
consider (y1, z1), (y2, z2) ∈ Bδ. From the hypothesis (H1), we obtain

|A1,2(y1, z1)(t) −A1,2(y2, z2)(t)| ≤ aIα1
q1
|g(t, y2(t), z2(t)) − g(t, y1(t), z1(t))|

≤ (m1∥y1 − y2∥ +m2∥z1 − z2∥) aIα1
q1

(1)(b)

≤ (m1 +m2)
(b − a)α1

Γq1(α1 + 1)
(∥y1 − y2∥ + ∥z1 − z2∥).

Also,

|A2,2(y1, z1)(t) −A2,2(y2, z2)(t)| ≤ aIα1
q2
|h(t, y2(t), z2(t)) − h(t, y1(t), z1(t))|

≤ (n1 + n2)
(b − a)α2

Γq2(α2 + 1)
(∥y1 − y2∥ + ∥z1 − z2∥).

Therefore,

∥(A1,2,A2,2)(y1, z1) − (A1,2,A2,2)(y2, z2)∥

≤
[
(m1 +m2)

(b − a)α1

Γq1(α1 + 1)
+ (n1 + n2)

(b − a)α2

Γq2(α2 + 1)
)
]
(∥y1 − y2∥ + ∥z1 − z2∥).

By the inequality in (3.7), the operator (A1,2,A2,2) is a contraction mapping. Using Krasnosel’skiĭ’s
fixed-point theorem, we conclude that there exists at least one solution for the Hilfer fractional quantum
system (1.2) on [a, b]. The proof is now completed. □

Remark 3.1. By interchanging the roles of the operators A1,1,A1,2 and A2,1,A2,2 in the foregoing
result, we can obtain a second existence result by replacing condition (3.7) with the following:

(
M1 −

(b − a)α1

Γq1(α1 + 1)
+M3

)
(m1 +m2) +

(
M2 +M4 −

(b − a)α2

Γq2(α2 + 1)

)
(n1 + n2) < 1.

4. Examples

In this section, we will show some applications of our results to the nonlinear Hilfer fractional
quantum system with Riemann-Liouville fractional derivatives and integral boundary conditions of the
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following form: 

(
H
1
8
D

5
4 ,

1
3

2
5

y
)

(t) = g (t, y(t), z(t)) ,
1
8
< t <

11
8
,(

H
1
8
D

7
4 ,

2
3

4
5

z
)

(t) = h (t, y(t), z(t)) ,
1
8
< t <

11
8
,

y
(
1
8

)
= 0, y

(
11
8

)
=

1
π2

(
RL
1
8

D
3
5
4
5
z
) (7

8

)
+

2
33

(
1
8
I

5
6
4
5
z
) (9

8

)
,

z
(
1
8

)
= 0, z

(
11
8

)
=

3
44

(
RL
1
8

D
1
5
2
5
y
) (3

8

)
+

1
e2

(
1
8
I

7
6
2
5
y
) (5

8

)
.

(4.1)

Here, we set α1 = 5/4, α2 = 7/4, β1 = 1/3, β2 = 2/3, q1 = 2/5, q2 = 4/5, a = 1/8, b = 11/8,
η1 = 3/8, η2 = 7/8, ξ1 = 5/8, ξ2 = 9/8, λ1 = 1/5, λ2 = 3/5, ϵ1 = 7/6, ϵ2 = 5/6, µ1 = 3/44, µ2 = 1/π2,
δ1 = 1/e2 and δ2 = 2/33. From these values, we can compute that γ1 = 3/2 and γ2 = 23/12; using
WolframAlpha, we obtain the following: Γq1(γ1) ≈ 0.9303873679, Γq2(γ2) ≈ 0.9715412324,
Γq1(γ1 − λ1) ≈ 0.9353312130, Γq2(γ2 − λ2) ≈ 0.9055725943, Γq1(γ1 + ϵ1) ≈ 1.2293719126,
Γq2(γ2 + ϵ2) ≈ 0.9622467967, Γq1(α1 + 1) ≈ 1.0689410188, Γq1(α1 − λ1 + 1) ≈ 1.0121177344,
Γq1(α1 + ϵ1 + 1) ≈ 1.6721250919, Γq2(α2 + 1) ≈ 1.5005722384, Γq2(α2 − λ2 + 1) ≈ 1.0631833692,
Γq2(α2 + ϵ2 + 1) ≈ 2.9452632392; using Maple, we obtain the following: Φ1 ≈ 0.07700624048,
Φ2 ≈ 0.1604286114, Φ3 ≈ 1.359440900, M1 ≈ 2.513723742, M2 ≈ 0.2911846155,
M3 ≈ 0.3119090080,M4 ≈ 1.989599422.

(i) Let the functions g and h that appear in problem (4.1) be the nonlinear unbounded functions
on [1/8, 11/8] that are respectively defined by

g(t, y, z) =
1

4(4t + 5)

(
y2 + 2|y|
1 + |y|

)
+

e−(8t−1)2

12
sin |z| +

1
2
,

h(t, y, z) =
1
9

cos2 πt tan−1 y +
1

3(8t + 9)

(
2z2 + 3|z|

1 + |z|

)
+

1
3
.

(4.2)

Then, g and h satisfy the Lipschitz condition, (H1), as follows:

|g(t, y1, z1) − g(t, y2, z2)| ≤
1

11
|y1 − y2| +

1
12
|z1 − z2|

and
|h(t, y1, z1) − h(t, y2, z2)| ≤

1
9
|y1 − y2| +

1
10
|z1 − z2|,

with m1 = 1/11, m2 = 1/12, n1 = 1/9, n2 = 1/10. Therefore, the following inequality holds:

(M1 +M3)(m1 +m2) + (M2 +M4)(n1 + n2) ≈ 0.9738439529 < 1.

Thus, (3.5) is true. By Theorem 3.1, this system (4.1), with g and h defined in (4.2), has a unique
solution on [1/8, 11/8].

(ii) Now, assume that the functions g and h in (4.1) are respectively given by
g(t, y, z) =

2
16t + 1

+
|y|2023

5(1 + y2022)
e−z2
+

1
7

(
y4 sin8 y
1 + y4

)
z,

h(t, y, z) =
2

11
t +

1
3π

(
|z|5 tan−1 z

1 + |z|5

)
y +

1
4

(
z2024

1 + |z|2023

)
cos12 y.

(4.3)
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We can see that both functions do not satisfy the Lipschitz condition. However, we can find the bounded
plane of each of them to be as follows:

|g(t, y1, y2)| ≤
2
3
+

1
5
|y1| +

1
7
|y2|

and
|h(t, y1, y2)| ≤

1
4
+

1
6
|y1| +

1
4
|y2|,

which satisfy condition (H2) with u0 = 2/3, u1 = 1/5, u2 = 1/7, v0 = 1/4, v1 = 1/6 and v2 = 1/4.
Since

(M1 +M3)u1 + (M2 +M4)v1 ≈ 0.9452572230 < 1

and
(M1 +M3)u2 + (M2 +M4)v2 ≈ 0.9738578309 < 1,

by Theorem 3.2, this system (4.1), with g and h given in (4.3), has at least one solution on [1/8, 11/8].
(iii) Finally, let g and h in (4.1) be the nonlinear functions respectively given by

g(t, y, z) =
1

2(8t + 1)

(
|y|

1 + |y|

)
+

e−(8t−1)2

5
sin |z| +

1
2
,

h(t, y, z) =
1
5

cos2 πt tan−1 y +
1

3(8t + 1)

(
|z|

1 + |z|

)
+

1
3
.

(4.4)

Then, we have

|g(t, y1, y2)| ≤
1

2(8t + 1)
+

e−(8t−1)2

5
+

1
2

:= P(t)

and
|h(t, y1, y2)| ≤

π

10
cos2 πt +

1
3(8t + 1)

+
1
3

:= Q(t).

Thus, the condition (H3) in Theorem 3.3 is satisfied. In addition, the Lipschitz condition is satisfied
since

|g(t, y1, z1) − g(t, y2, z2)| ≤
1
4
|y1 − y2| +

1
5
|z1 − z2|

and
|h(t, y1, z1) − h(t, y2, z2)| ≤

1
5
|y1 − y2| +

1
6
|z1 − z2|,

with m1 = 1/4, m2 = 1/5, n1 = 1/5, n2 = 1/6. Since

(m1 +m2)
(b − a)α1

Γq1(α1 + 1)
+ (n1 + n2)

(b − a)α2

Γq2(α2 + 1)
≈ 0.9174947461 < 1,

by Theorem 3.3, this system (4.1), with g and h given in (4.4), has at least one solution on [1/8, 11/8].
It is important to notice that the functions g and h given in (4.4), although they satisfy the Lipschitz

condition, do not guarantee uniqueness because

(M1 +M3)(m1 +m2) + (M2 +M4)(n1 + n2) ≈ 2.107822219 > 1.
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5. Conclusions

We investigated a new problem that appeared for the first time in the literature by combining Hilfer
quantum and Riemann-Liouville fractional derivative operators with q-Riemann-Liouville inregral
operators. We established the existence and uniqueness of solutions to a coupled system involving
Hilfer fractional quantum derivatives supplemented by nonlocal boundary value conditions containing
both q-Riemann-Liouville fractional derivatives and integrals. We first transformed the given system
into a fixed-point problem by using its linear variant. Then, we established the existence and
uniqueness of a solution via Banach’s contraction mapping principle; we also obtained two existence
results by using the Leray-Schauder alternative and Krasnosel’skiĭ’s fixed-point theorem. The
applicability of these theoretical results are demonstrated through constructed numerical examples.
These new results will enrich the literature on this new topic of research. Also, by appropriately fixing
the parameters involved in the problem, our results imply several results on the existence and
uniqueness for other coupled systems. Consider the following examples: (i) a coupled system of
Hilfer fractional quantum differential equations with q-Riemann-Liouville fractional derivatives is
obtained when δ1 = δ2 = 0; (ii) a coupled system of Hilfer fractional quantum differential equations
with q-Riemann-Liouville fractional integrals is obtained when µ1 = µ2 = 0; (iii) a coupled system of
Hilfer fractional quantum differential equations with mixed q-Riemann-Liouville fractional
derivatives and integrals is obtained when either δ1, δ2 or µ1, µ2 is zero.
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