Research article Special Issues

Inverse chi-square-based flamingo search optimization with machine learning-based security solution for Internet of Things edge devices

  • Received: 07 August 2023 Revised: 06 November 2023 Accepted: 13 November 2023 Published: 24 November 2023
  • MSC : 68M11, 68M25, 68T07, 68W1

  • Internet of Things (IoT) edge devices are becoming extremely popular because of their ability to process data locally, conserve bandwidth, and reduce latency. However, with the developing count of IoT devices, threat detection, and security are becoming major concerns. IoT edge devices must avoid cyber threats and protect user data. These devices frequently take limited resources and can run on lightweight operating systems, which makes them vulnerable to security attacks. Intrusion detection systems (IDS) can be run on edge devices to recognize suspicious actions and possible risks. These systems monitor traffic patterns, and behavior, and identify attack signatures to detect and report on possible attacks. This study presents a design for an inverse chi square-based flamingo search optimization algorithm with machine learning (ICSFSO-ML) as a security solution for Internet of Things edge devices. The goal of the ICSFSO-ML technique is to apply ML and metaheuristics for threat recognition in IoT edge devices. To reduce the high dimensionality problem, the ICSFSO-ML technique uses the ICSFSO algorithm for feature selection purposes. Further, the ICSFSO-ML technique exploits the stacked bidirectional long short-term memory (SBiLSTM) model for the threat detection process. To enhance the efficacy of the SBiLSTM model, an arithmetic optimization algorithm (AOA) is applied for the hyperparameter selection process. The simulation performance of the ICSFSO-ML technique can be tested on a benchmark threat database. The performance analysis showed the benefits of the ICSFSO-ML methodology compared to existing methodologies with a maximum accuracy of 98.22%.

    Citation: Youseef Alotaibi, R Deepa, K Shankar, Surendran Rajendran. Inverse chi-square-based flamingo search optimization with machine learning-based security solution for Internet of Things edge devices[J]. AIMS Mathematics, 2024, 9(1): 22-37. doi: 10.3934/math.2024002

    Related Papers:

  • Internet of Things (IoT) edge devices are becoming extremely popular because of their ability to process data locally, conserve bandwidth, and reduce latency. However, with the developing count of IoT devices, threat detection, and security are becoming major concerns. IoT edge devices must avoid cyber threats and protect user data. These devices frequently take limited resources and can run on lightweight operating systems, which makes them vulnerable to security attacks. Intrusion detection systems (IDS) can be run on edge devices to recognize suspicious actions and possible risks. These systems monitor traffic patterns, and behavior, and identify attack signatures to detect and report on possible attacks. This study presents a design for an inverse chi square-based flamingo search optimization algorithm with machine learning (ICSFSO-ML) as a security solution for Internet of Things edge devices. The goal of the ICSFSO-ML technique is to apply ML and metaheuristics for threat recognition in IoT edge devices. To reduce the high dimensionality problem, the ICSFSO-ML technique uses the ICSFSO algorithm for feature selection purposes. Further, the ICSFSO-ML technique exploits the stacked bidirectional long short-term memory (SBiLSTM) model for the threat detection process. To enhance the efficacy of the SBiLSTM model, an arithmetic optimization algorithm (AOA) is applied for the hyperparameter selection process. The simulation performance of the ICSFSO-ML technique can be tested on a benchmark threat database. The performance analysis showed the benefits of the ICSFSO-ML methodology compared to existing methodologies with a maximum accuracy of 98.22%.



    加载中


    [1] A. Mozo, A. Karamchandani, L. de la Cal, S. Gomez-Canaval, A. Pastor, L. Gifre, A mchine-learning-based cyberattack detector for a cloud-based SDN controller, Apli. Sci., 13 (2023), 4914. https://doi.org/10.3390/app13084914 doi: 10.3390/app13084914
    [2] A. Dutta, S. Kant, Implementation of cyber threat intelligence platform on the Internet of Things (IoT) using TinyML approach for deceiving cyber invasion, 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 2021, 1–6. https://doi.org/10.1109/ICECCME52200.2021.9590959 doi: 10.1109/ICECCME52200.2021.9590959
    [3] A. Aldaej, T. A. Ahanger, M. Atiquzzaman, I. Ullah, M. Yousufudin, Smart cybersecurity framework for IoT-empowered drones: Machine learning perspective, Sensors, 22 (2022), 2630. https://doi.org/10.3390/s22072630 doi: 10.3390/s22072630
    [4] I. Goni, J. M. Gumpy, T. U. Maigari, M. Muhammad, A. Saidu, Cybersecurity and cyber forensics: Machine learning approach, Mach Learn Res., 5 (2020), 46–50. https://doi.org/10.11648/j.mlr.20200504.11 doi: 10.11648/j.mlr.20200504.11
    [5] F. S. Alrayes, N. Alshuqayran, M. K. Nour, M. Al Duhayyim, A. Mohamed, A. A. A. Mohammed, et al., Optimal fuzzy logic enabled intrusion detection for secure IoT-cloud environment, CMC-Comput. Mater. Con., 74 (2023), 6737–6753. http://doi.org/10.32604/cmc.2023.032591 doi: 10.32604/cmc.2023.032591
    [6] P. Koloveas, T. Chantzios, S. Alevizopoulou, S. Skiadopoulos, C. Tryfonopoulos, Intime: A machine learning-based framework for gathering and leveraging web data to cyber-threat intelligence, Electronics, 10 (2021), 818. https://doi.org/10.3390/electronics10070818 doi: 10.3390/electronics10070818
    [7] M. Maray, H. M. Alshahrani, K. A. Alissa, N. Alotaibi, A. Gaddah, A. Meree, Optimal deep learning driven intrusion detection in SDN-Enabled IoT environment, Comput. Mater. Con., 74 (2023), 6587–6604. https://doi.org/10.32604/cmc.2023.034176 doi: 10.32604/cmc.2023.034176
    [8] K. H. Almotairi, Application of internet of things in the healthcare domain, J. Umm Al-Qura Univ. Eng. Architecture, 14 (2023), 1–12. https://doi.org/10.1007/s43995-022-00008-8 doi: 10.1007/s43995-022-00008-8
    [9] T. Moulahi, R. Jabbar, A. Alabdulatif, S. Abbas, S. El Khediri, S. Zidi, et al., Privacy‐preserving federated learning cyber‐threat detection for intelligent transport systems with blockchain‐based security, Expert Syst., 40 (2023), 13103. https://doi.org/10.1111/exsy.13103 doi: 10.1111/exsy.13103
    [10] K. Marsh, S. E. Gharghasheh, Fuzzy Bayesian learning for cyber threat hunting in industrial control systems, In: Handbook of big data analytics and forensics, Springer, Cham. 2022,117–130. https://doi.org/10.1007/978-3-030-74753-4_8
    [11] S. Mishra, A. Albarakati, S. K. Sharma, Cyber threat intelligence for IoT using machine learning, Processes, 10 (2022), 2673. https://doi.org/10.3390/pr10122673 doi: 10.3390/pr10122673
    [12] A. K. Dey, G. P. Gupta, S. P. Sahu, A metaheuristic-based ensemble feature selection framework for cyber threat detection in IoT-enabled networks, Decis. Anal. J., 7 (2023), 100206. https://doi.org/10.1016/j.dajour.2023.100206 doi: 10.1016/j.dajour.2023.100206
    [13] Y. Zhang, J. Xu, Z. Wang, R. Geng, K. K. R. Choo, J. A. Perez-Díaz, et al., Efficient and intelligent attack detection in software-defined IoT networks. In: 2020 IEEE International Conference on Embedded Software and Systems (ICESS), 2020. https://doi.org/10.1109/ICESS49830.2020.9301591
    [14] A. Aldaej, T. A. Ahanger, M. Atiquzzaman, I. Ullah, M. Yousufudin, Smart cybersecurity framework for IoT-empowered drones: Machine learning perspective, Sensors, 22 (2022), 2630. https://doi.org/10.3390/s22072630 doi: 10.3390/s22072630
    [15] M. Sarhan, S. Layeghy, N. Moustafa, M. Portmann, Cyber threat intelligence sharing scheme based on federated learning for network intrusion detection, J. Netw. Syst. Manage., 31(2023), 3. https://doi.org/10.1007/s10922-022-09691-3 doi: 10.1007/s10922-022-09691-3
    [16] H. HaddadPajouh, R. Khayami, A. Dehghantanha, K. K. R. Choo, R. M. Parizi, AI4SAFE-IoT: An AI-powered secure architecture for edge layer of the Internet of things, Neural Comput. Appl., 32 (2020), 16119–16133. https://doi.org/10.1007/s00521-020-04772-3 doi: 10.1007/s00521-020-04772-3
    [17] H. Makina, A. B. Letaifa, Bringing intelligence to Edge/Fog in Internet of Things‐based healthcare applications: Machine learning/deep learning‐based use cases, Int. J. Commun. Syst., 36 (2023), e5484. https://doi.org/10.1002/dac.5484 doi: 10.1002/dac.5484
    [18] D. K. Gasu, Threat detection in cyber security using data mining and machine learning Techniques, In: Modern theories and practices for cyber ethics and security compliance, IGI Global, 2020,234–253.
    [19] M. Dahiya, N. Nitin, Developing a secure framework using feature selection and attack detection technique, Comput. Mater. Con., 74 (2023), 4183–4201. https://doi.org/10.32604/cmc.2023.032430 doi: 10.32604/cmc.2023.032430
    [20] K. S. Riya, R. Surendran, C. A. T. Romero, M. S. Sendil, Encryption with user authentication model for internet of medical things environment, Intell. Autom. Soft Comput., 35 (2023), 507–520. https://doi.org/10.32604/iasc.2023.027779 doi: 10.32604/iasc.2023.027779
    [21] N. Talpur, S. J. Abdulkadir, E. A. P. Akhir, M. H. Hasan, H. Alhussian, M. H. A. Abdullah, A novel bitwise arithmetic optimization algorithm for the rule base optimization of the deep neuro-fuzzy system, J. King Saud Univ.-Com., 35 (2023), 821–842. https://doi.org/10.1016/j.jksuci.2023.01.020 doi: 10.1016/j.jksuci.2023.01.020
    [22] K. Nagappan, S. Rajendran, Y. Alotaibi, Trust aware multi-objective metaheuristic optimization based secure route planning technique for cluster-based IoT environment, IEEE Access, 10 (2022), 112686–112694. https://doi.org/10.1109/ACCESS.2022.3211971 doi: 10.1109/ACCESS.2022.3211971
    [23] A. Yazdinejad, B. Zolfaghari, A. Dehghantanha, H. Karimipour, G. Srivastava, R. M. Parizi, Accurate threat hunting in industrial internet of things edge devices, Digit. Commun. Netw., 9 (2023), 1123–1130. https://doi.org/10.1016/j.dcan.2022.09.010 doi: 10.1016/j.dcan.2022.09.010
    [24] R. Surendran, Y. Alotaibi, A. Subahi, Lens-oppositional wild geese optimization based clustering scheme for wireless sensor networks assists real time disaster management, Comput. Syst. Sci. Eng., 46 (2023), 835–851. https://doi.org/10.32604/csse.2023.036757 doi: 10.32604/csse.2023.036757
    [25] M. O. Pahl, F. X. Aubet, All eyes on you: Distributed multi-Dimensional IoT microservice anomaly detection, In: 2018 14th International Conference on Network and Service Management (CNSM), 2018, 72–80.
    [26] X. Yang, S. Li, Prediction of COVID-19 using a WOA-BILSTM model, Bioengineering, 10 (2023), 883. https://doi.org/10.3390/bioengineering10080883 doi: 10.3390/bioengineering10080883
    [27] F. Gabbay, R. L. Aharoni, O. Schweitzer, Deep neural network memory performance and throughput modeling and simulation framework, Mathematics, 10 (2022), 4144. https://doi.org/10.3390/math10214144 doi: 10.3390/math10214144
    [28] J. Mariselvam, S. Rajendran, Y. Alotaibi, Reinforcement learning-based AI assistant and VR play therapy game for children with Down syndrome bound to wheelchairs, AIMS Mathematics, 8 (2023), 16989–17011. https://doi.org/10.3934/math.2023867 doi: 10.3934/math.2023867
    [29] T. Tamilvizhi, Y. Alotaibi, S. Rajendran, K. Nagappan, Improved wolf swarm optimization with deep-learning-based movement analysis and self-regulated human activity recognition, AIMS Mathematics, 8 (2023), 12520–12539. https://doi.org/10.3934/math.2023629 doi: 10.3934/math.2023629
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1323) PDF downloads(173) Cited by(1)

Article outline

Figures and Tables

Figures(10)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog